Guidelines for Online Network Crawling: A Study of Data Collection Approaches and Network Properties

Katchaguy Areekijseree Ricky Laishram Sucheta Soundarajan

Syracuse University, Syracuse, NY, USA

WebSci'18

Data Collection

- The study of complex networks has gained a lot of attention from researchers.
- ► A convenient way is to get data from APIs.
- Many OSNs provide APIs for accessing data (Facebook, Twitter).
- \blacktriangleright Network Sampling / Crawling \approx Online Sampling
- ► Challenge: The data collection process takes a lot of time.
- Question: Since they are many proposed algorithms, it is often difficult for users to select a crawling technique.

Problem Definition

Let G = (V, E) be a static unobserved, undirected network.

- ▶ Input: A starting node *n_s* and query budget *b*.
- ► In each step, the crawler queries an observed-but-not-queried node. The process repeats for *b* times.
- ► Output: a sample graph S = (V', E'), where V' ⊆ V and E' ⊆ E, containing all nodes and edges observed.

Two different crawling goals:

1. Node Coverage: Maximize a number of observed nodes (|V'|).

2. Edge Coverage: Maximize a number of observed edges (|E'|).

Related Application: preserving community structure[MBW10a], preserving high centrality nodes[MBW10b].

Contributions

- Examine how the network properties affect the crawling methods' performance.
- Perform extensive, scientific analysis of the relationship between network structural properties and the algorithms performance.
- Provide guidelines on how to select an appropriate crawling method.

Observation

Hypothesis

- ► It may be difficult for a crawler to move between regions.
- The crawler gets stuck in one general area. So, it will eventually start seeing the same nodes and edges over and over again (diminishing returns).

Network Properties of Interest

We are interested in 3 properties.

- 1. Community Separation Community Mixing/Modularity
- 2. Node Average Degree
- 3. Average Community Size

* We select these properties based on the intuition that a crawler has difficulty in moving between regions.

Online Crawling Approaches

We select nine popular algorithms from the literature and categorize them into three classes (G1-G3) based on the results.

- ► G1: Node Importance-based Methods
 - Maximum Observed Degree [ABN⁺14]
 - Maximum Observed PageRank [SRR12]
 - Online Page Importance Computation [APC03]
- ► G2: Random Walk [LF06]
- ► G3: Graph Traversal-based Methods
 - Breadth-first Search [MMG⁺07]
 - Depth-first Search
 - Snowball Sampling [AHK⁺07]
 - Random Crawling
 - Volatile Multi-armed Bandit [BPSF13]

We perform two sets of studies.

- 1. The effects of network properties
 - Controlled experiments on synthetic (LFR model) and real networks.
- 2. Categorizing network types
 - Studies the algorithms' performance on different types of networks.
 - collaboration, web, scientific, technological, Facebook, OSNs.

Study 1: The Effects of Network Properties

Results on networks with different values of community mixing $\mu,$ average degree =15 and average community size = 300

Finding

The performance of G1 methods improves as the value of community mixing increases. Others are stable.

Study 1: The Effects of Network Properties

Networks with different values of d_{avg} and CS_{avg} when community mixing μ =0.1.

Finding

- G1 works great on networks with large community sizes.
- G3 performance increases when average degree increases.
- ► G2 is not affected by these properties.

Study 1: Real World Networks

On real world networks, the performance of methods in G2 drops when modularity increases.

Study 1: Summary

Coverage	Property	G1: Node Importance-Based	G2: Random Walk	G3: Graph Traversal-Based
Node	Commu- nity Separation	Excellent performance when community overlap is high (i.e. low Q or high μ).		Stable
	Average community size	Strong performance when communities are large if μ is low. Community size does not matter if μ is high.	Stable	
	Average degree	Strong performance when average degree is extremely low (<10) even if μ is low. Otherwise, stable		Performance improvement when average degree increases.
Best Method in Group		MOD	RW	BFS

Study 2: Network Types

The network properties are not known beforehand. How can one select an appropriate method?

Туре	Network	d _{avg}	CS _{avg}	Q	Properties	Method
Collab.	Citeseer	7.16	988.35	0.90	1 I P	
	Dblp-2010	6.33	739.91	0.86	sized and clear	G 1
	Dblp-2012	6.62	1248.35	0.82		
	MathSciNet	4.93	594.09	0.80	communicies	
Recmnd.	Amazon	2.74	272.44	0.99	Low degree, small	G1
	Github	7.25	83.68	0.43	and clear communities	
FB	OR	25.77	1074.44	0.63		G2
	Penn94	65.59	2186.11	0.49	High degree, large	
	Wosn-friends	25.77	856.65	0.63	and clear communities	
Tech.	P2P-gnutella	4.73	1276.76	0.50	Low degree, large	G1
	RL-caida	6.37	856.12	0.86	and clear communities	
	Arabic-2005	21.36	115.86	1.00	Utale de mar anadione	G1
Woh	Italycnr-2000	17.36	1134.34	0.91	nign degree, medium	
web.	Sk-2005	5.51	338.22	0.99	communities	
	Uk-2005	181.19	157.13	1.00		
OSNs.	Slashdot	10.24	173.87	0.36	High degree, small-to-	G1
	Themarker	29.87	458.90	0.31	medium-sized and	
	BlogCatalog	47.15	1455.48	0.32	fuzzy communities	
Scientific	PKUSTK13	68.73	3,514.56	0.88		G2
	PWTK	51.89	4,635.81	0.93	High degree, large	
	Shipsec1	24.36	4,117.50	0.89	and clear communities	
	Shipsec5	24.61	5,252.15	0.90		

Conclusion

- We performed a large-scale, comprehensive study to understand how the structural features of networks affect the performance of sampling methods.
- Three network properties of interest: community separation, community size, and average degree.
- ► Algorithm performance is highly dependent on the network structure, and in particular, whether the crawler is able to transition between different regions of the graph.

Thank You

Questions?

kareekij@syr.edu

References I

- Konstantin Avrachenkov, Prithwish Basu, Giovanni Neglia, Bruno Ribeiro, and Don Towsley, *Pay few, influence most: Online myopic network covering*, Computer Communications Workshops, 2014.
- Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong, *Analysis of topological characteristics of huge online social networking services*, International conference on WWW, 2007.
- Serge Abiteboul, Mihai Preda, and Gregory Cobena, *Adaptive on-line page importance computation*, Proceedings of the 12th international conference on World Wide Web, 2003.
- Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner, *Bandit algorithms for social network queries*, 2013 International Conference on Social Computing, IEEE, 2013, pp. 148–153.

References II

- Jure Leskovec and Christos Faloutsos, *Sampling from large graphs*, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2006, pp. 631–636.
- Arun S Maiya and Tanya Y Berger-Wolf, Online sampling of high centrality individuals in social networks, Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 2010, pp. 91–98.
- Sampling community structure, Proceedings of the 19th international conference on World wide web, ACM, 2010, pp. 701–710.

References III

- Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee, *Measurement and analysis of online social networks*, 7th ACM SIGCOMM conference on Internet measurement, ACM, 2007, pp. 29–42.
- Mostafa Salehi, Hamid R Rabiee, and Arezo Rajabi, Sampling from complex networks with high community structures, Chaos 22 (2012), no. 2.