DE-Crawler: A Densification-Expansion Algorithm for Online Data Collection

Katchaguy Areekijseree (Bebe) Sucheta Soundarajan {kareekij,susounda}@syr.edu

Syracuse University, Syracuse, NY, USA

ASONAM 2018

Data Collection

- The study of complex networks has gained a lot of attention from researchers.
- A convenient way is to get data from OSNs.
- Many OSNs provide APIs for accessing data.
- Network Sampling or Network Crawling
- Challenge: The data collection process takes a lot of time.
- For example, they took 6 days to get 8,000 unique users on Twitter in [WWFJS].

Use Case Scenario

- ▶ You want to analyze the community structure of the network.
- Before the analysis task, the first thing is to collect the network data - collect as many distinct users as many as possible.
- ▶ You have *b* days (or weeks) to do a data collection.
- Question: Given a budget (time/money), which nodes should we select and make query such that we obtain distinct users as many as possible?

Problem Definition

Let G = (V, E) be a static unobserved, undirected network.

- ▶ Input: A starting node *n_s* and a number of query budget *b*.
- ► In each step, the crawler queries an observed-but-not-queried node and *ALL neighbors* are returned as a response.
- Repeat b times.
- Output: a sample graph S = (V', E'), where $V' \subseteq V$ and $E' \subseteq E$, containing all nodes and edges observed.

Goal: Maximize a number of observed nodes (node coverage).

Related Applications

preserving community structure[MBW10a], preserving high centrality nodes[MBW10b], census-liked applications.

Making Query: Toy Example

Previous Work

Our Previous Study [ALS18]: Network Properties of Interest

The goal of the previous study.

The relationship between network properties and crawling algorithms performance

- 1. We were interested in 3 properties such as **community separation**, average degree and community size.
- 2. We selected these properties based on the intuition that a crawler has difficulty in moving between regions.

Our Previous Study [ALS18]: Online Crawling Approaches

We selected nine popular algorithms from the literature and categorized them into three classes (G1-G3) based on the results.

- ► G1: Node Importance-based Methods
 - Maximum Observed Degree [ABN⁺14]
 - Maximum Observed PageRank [SRR12]
 - Online Page Importance Computation [APC03]
- ► G2: Random Walk [LF06]
- ► G3: Graph Traversal-based Methods
 - Breadth-first Search [MMG⁺07]
 - Depth-first Search
 - Snowball Sampling [AHK⁺07]
 - Random Crawling
 - Volatile Multi-armed Bandit [BPSF13]

Our Previous Study [ALS18]

Finding 1

Network properties have a strong effect on the performance of various crawling methods.

Finding 2

Random Walk (G2) crawler is most stable algoritm and works the best on networks with distinct community structure.

Finding 3

Node Importance-based (G1) crawler works the best on networks with overlapping community structure or large community.

Finding 4

The performance of Graph Traversal-based (G3) crawler cannot beat the others in this specific crawling goal.

This work: DE-Crawler

Contribution of this work

In this work,

- 1. We present **DE-Crawler**, a novel crawling method, for the task of node coverage.
- 2. We perform the experiments on networks from diverse categories (collaboration, FB, OSNs, the WWW and technological).
- 3. We show that **DE-Crawler** performs the best across different network categories.

Key Concept of the **DE-Crawler**

DE-crawler

INPUT: a starting node, total budget, initialize budget. OUTPUT: a sampled network S=(V', E').

Algorithm 1 Densification-Expansion

1: function DE-Crawler (n_s, b, b') $S = \text{Initialize}(n_s, b')$ 2: $\triangleright \star$ 3. for t = b' to b do $v_d = \text{Expansion}(S)$ 4: $\triangleright \star$ $S' = \text{Densification}(v_d)$ 5: $\triangleright \star$ S = Merge(S, S')6: 7: end for return S 8: 9: end function

DE-crawler: Initialization

Key Idea

Collect a small sample and initialize parameters.

- The crawler collects a small sample, so, it obtain information about the underlying network structure.
- This step can be done by any crawling technique, we adopt Random walk-based [DKS14].
- Initialize parameters: $\alpha_1, \alpha_2, \beta_1, \beta_2$.

DE-crawler: Densification

Key Idea

Explore the current region and quickly find as many nodes as possible

- Find hub nodes (high degree nodes)
- ▶ Node selection: For every node v,

DE-crawler: Densification

Switching criteria: $s_t^d < s_t^e$

- ► If the *densification score* (s^d_t) is high, it means there are more nodes left unexplored in the current region of the network.
- ► If the expansion score (s^d_e) is high, it means a crawler seems to see same nodes over and over.

DE-crawler: Expansion

Key Idea

The crawler wants to move to an unexplored region.

In the spirit of explore-exploit algorithm, we use the approach of choosing a node uniformly at random from the list of observed-but-not-queried nodes.

Experiments and Results

Experiment Setup

- ► We compare **DE-Crawler** to seven baseline crawling methods.
- Perform the experiments on eighteen networks from five categories.
- ▶ Perform 10 runs on each network and report the average.
- Set total budget b to be 10% of the total nodes and b' to be 15% of the total budget.

Results 1

DE-Crawler consistently outperforms or matches the best baseline method on networks that G2 outperforms G1.

Results 2

DE-Crawler consistently outperforms or matches the best baseline method on networks that G1 outperforms G2.

Results 3.1 - Compare against optimal greedy algorithm

- Optimal greedy algorithm: maximum excess degree (MED) algorithm.
 - excess degree = true deg observed degree
- ► The average *regret* of **DE-Crawler** and baseline algorithms.

- regret =
$$\frac{p_{optimal} - p_x}{p_{optimal}}$$
.

Results 3.2 - Compare against optimal greedy algorithm

Туре	Network	DE	RW	MOD	OPIC	BFS
Collaboration	AstroPh	0.144	0.159	0.202	0.194	0.185
	CondMat	0.292	0.349	0.440	0.396	0.406
	HepPh	0.158	0.246	0.350	0.205	0.270
	Citeseer	0.359	0.467	0.452	0.458	0.557
Facebook100	Bingham	0.023	0.024	0.130	0.145	0.026
	JohnsHopkins	0.034	0.041	0.129	0.148	0.047
	WashU	0.012	0.013	0.149	0.163	0.027
	Yale	0.007	0.020	0.080	0.107	0.023
OSN	Anybeat	0.082	0.110	0.079	0.070	0.442
	Slashdot	0.045	0.129	0.045	0.046	0.419
	Hamsterster	0.119	0.165	0.184	0.218	0.336
Web	Google	0.450	0.676	0.471	0.582	0.612
	Indochina	0.522	0.623	0.583	0.631	0.718
	Webbase	0.730	0.764	0.730	0.781	0.764
Tech.	RL-caida	0.359	0.370	0.372	0.449	0.419
	PGP	0.383	0.465	0.416	0.453	0.536
	Routers-RF	0.219	0.307	0.304	0.265	0.397
	WhoIs	0.130	0.184	0.274	0.270	0.469
Average		0.226	0.284	0.299	0.310	0.370

* Lower is better

Conclusion

- We considered the problem of online network crawling maximize node coverage.
- ► We proposed **DE-Crawler**, a *Densification-Expansion* algorithm.
- DE-Crawler outperforms other baselines up to 28% improvement.
- DE-Crawler performance is consistent over all considered network types.

Thank You

Questions?

kareekij@syr.edu

References I

- Konstantin Avrachenkov, Prithwish Basu, Giovanni Neglia, Bruno Ribeiro, and Don Towsley, *Pay few, influence most: Online myopic network covering*, Computer Communications Workshops, 2014.
- Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong, *Analysis of topological characteristics of huge online social networking services*, International conference on WWW, 2007.
- Katchaguy Areekijseree, Ricky Laishram, and Sucheta Soundarajan, Guidelines for online network crawling: A study of data collection approaches and network properties, Proceedings of the 10th ACM Conference on Web Science, ACM, 2018, pp. 57–66.

References II

- Serge Abiteboul, Mihai Preda, and Gregory Cobena, *Adaptive on-line page importance computation*, Proceedings of the 12th international conference on World Wide Web, 2003.
- Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner, *Bandit algorithms for social network queries*, 2013 International Conference on Social Computing, IEEE, 2013, pp. 148–153.
- Anirban Dasgupta, Ravi Kumar, and Tamas Sarlos, *On estimating the average degree*, Proceedings of the 23rd international conference on World wide web, ACM, 2014, pp. 795–806.
- Jure Leskovec and Christos Faloutsos, *Sampling from large graphs*, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2006, pp. 631–636.

References III

- Arun S Maiya and Tanya Y Berger-Wolf, Online sampling of high centrality individuals in social networks, Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer, 2010, pp. 91–98.
- Sampling community structure, Proceedings of the 19th international conference on World wide web, ACM, 2010, pp. 701–710.
- Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee, *Measurement and analysis of online social networks*, 7th ACM SIGCOMM conference on Internet measurement, ACM, 2007, pp. 29–42.
- Mostafa Salehi, Hamid R Rabiee, and Arezo Rajabi, Sampling from complex networks with high community structures, Chaos 22 (2012), no. 2.

References IV

Jeremy D Wendt, Randy Wells, Richard V Field Jr, and Sucheta Soundarajan, *On data collection, graph construction, and sampling in twitter.*