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Abstract. In the era of big-data, personal data is produced, collected and con-
sumed at different sites. A public directory connects data producers and con-
sumers over the Internet and should be constructed securely given the privacy-
sensitive nature of personal data.
This work tackles the research problem of distributed, privacy-preserving direc-
tory publication, with strong security and practical efficiency. For proven secu-
rity, we follow the protocols of secure multi-party computations (MPC). For ef-
ficiency, we propose a pre-computation framework that minimizes the private
computation and conducts aggressive pre-computation on public data. Several
pre-computation policies are proposed with varying degrees of aggressiveness.
For systems-level efficiency, the pre-computation is implemented with data par-
allelism on general-purpose graphics processing units (GPGPU).We apply the
proposed scheme to real health-care scenarios for constructing patient-locator
services in emerging Health Information Exchange (or HIE) networks.
We conduct extensive performance studies on real datasets and with an imple-
mentation based on open-source MPC software. With experiments on local and
geo-distributed settings, our performance results show that the proposed pre-
computation achieves a speedup of more than an order of magnitude without
security loss.

1 Introduction

In the era of big-data, personal data is produced, collected and consumed in digital
forms, bringing unprecedented convenience to the society. As data production and con-
sumption are decoupled at different sites, sharing person-specific data over the Internet
becomes a popular application paradigm as widely observed in a variety of domains
ranging from electronic healthcare, social networks, Internet of things, malware detec-
tion, to many others.

A public directory service is a crucial data-sharing component. In a data-sharing
workflow, a data consumer queries the directory service to locate the producer sites
that may have the documents of interest. The directory service maintains the private
producer-location information, and connects data consumers and producers. For in-
stance, in electronic healthcare, HIE or Healthcare Information Exchange is an emerg-
ing data-sharing platform [10, 4] where the directory called locator service [1, 9, 11, 5]
helps a doctor (data consumer) find the electronic medical records (EMR) of a patient
(data producer). The data-location information (“which hospitals a patient has visited”)



may reveal privacy-sensitive facts; for instance, knowing that a celebrity visited a reha-
bilitation center, one can infer that s/he may have a drug problem.

A naive way of constructing the directory is for any data producer to directly publish
its list of associated people (e.g., the list of patients having visited a hospital). However,
this approach discloses the private data-location information to network adversaries
performing traffic analysis. This privacy disclosure leaks “identifiable information” and
would violate data-protection laws (e.g., HIPAA in USA [6], EC95-46 in European
Union [3] and various privacy laws in Asian countries [56]) that govern the data-sharing
across borders in regulatory domains.

This work tackles the problem of distributed and privacy-preserving publication
of directory, with strong security and high efficiency. In our problem, data produc-
ers are operated autonomously and they distrust each other. The publication problem
can be modeled as a secure Multi-Party Computation (MPC) problem [73, 37, 25, 52,
27] where a joint computation with inputs private to different parties is evaluated in a
proven-secure fashion. A naive instantiation of the directory publication is by embed-
ding entire publication logic in an MPC protocol, which however causes high overhead
and is impractical, because of the expensive cryptographic primitives used in construct-
ing an MPC. A conventional remedy is to identify the private part of the computation
(e.g., by data-flow analysis [59, 17]) and to map only this part to the MPC. Unfortu-
nately, this approach is not effective in our problem, as the private and public data flows
of the directory-construction logic are inter-tangled and separating them becomes diffi-
cult.

In this work, we propose an aggressive pre-computation technique that minimizes
(instead of separating) the private computation for multi-party directory publication.
Concretely, we conduct the pre-computation by considering all possible values of pri-
vate data. It then applies expensive MPCs to a simple selection logic, that is, select from
the list of pre-computed results by the actual value of private data. At the first glimpse,
this optimization technique may seem counter-intuitive as the pre-computation aug-
ments the input space exponentially. In practice, particular to our directory construction
problem, its effectiveness relies on the application characteristic: The public computa-
tion is usually bulky and private identity data is much smaller. For instance, achieving
the privacy of t-closeness [51] entails complex computation on the public background
knowledge, such as similarity/distance calculation. With a global identity management
system, the private identifiable data is minimal. In addition, we propose several policies
that vary in the degree of pre-computation aggressiveness. The policies can help the
optimization technique adapt to concrete scenarios with different private-data sizes.

To improve the system efficiency, we leverage the data-level parallelism and imple-
ment the pre-computation on General-Purpose Graphics Processing Units (GPGPU).
We implement our design on real MPC software [25] and conduct performance eval-
uation in both local and geo-distributed settings. Our evaluation verifies the pre-
computation speedup by more than an order of magnitude over the conventional ap-
proach. Through evaluation on real-world datasets, the assurance of privacy preserva-
tion is also verified.

The contributions of this work are listed as following:

– We address the research of constructing privacy-preserving directory in emerging
data-sharing applications. We model the general problem as a distributed privacy-
preserving data publication problem.

– We propose an application-specific techniques for MPC pre-computation in the di-
rectory publication. The insight is based on that the public background knowledge in
privacy-preserving publication can be isolated from expensive MPC. We implement
this optimization design on real MPC software.

– We propose systems-level optimization by data-parallel pre-computation. We imple-
ment the optimization on GPGPU.



– We conduct performance evaluation and demonstrate an order of magnitude perfor-
mance speedup.

The rest of the paper is organized as following: § 2 formulates the research prob-
lem. The proposed technique, pre-computation based MPC for directory publication, is
presented in § 3. A case study in healthcare domain is described in § 4. Performance
evaluation is presented next in § 5. We discuss the generalizability and extensions of the
proposed technique in § 6. § 7 surveys the related work and § 8 concludes the paper.

2 Research Formulation

This section presents the system and threat model, the security goals, survey of existing
techniques, and preliminary on privacy-preserving data publication algorithms.

2.1 System Model

The target eco-system involves three roles: data producers, data consumers, and the
host of directory service. Each data producer owns a table of personal records where
each record is keyed by the identity of the owner of this record. Given a person of
interest, a data consumer would want to find his/her records at all producer sites. The
directory service helps the consumer “discover” relevant data producers who maintain
the result records.

Formally, sharing personal records in our system works in two steps: First, a data
consumer interested in a person’s records poses a query to the directory service and
looks up the list of producers who have this person’s records. Then, the consumer con-
tacts individual producers and locally searches the records there. In this process, the
query is based on a personal identity, which we assume is known globally. In practice,
this global identity can be maintained physically by an identity-management server or
constructed virtually such as by patient record linkage in healthcare [70, 43].
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Fig. 1: System model of public directory: Two data producers share three people’s

records. In the directory, value one means presence and zero means absence (e.g., pro-

ducer H1 does not have gray person’s records). The underscored one in red is a false

positive in the sense that producer H2 does not have the record of the white person but

the directory records the opposite (for the sake of privacy preservation).

We assume each data producer locally has a data-protection mechanism in place
(e.g., user authentication and authorization) that prevents an external party from access-
ing the records without data owner’s consent. Figure 1 illustrates the abstract model
of our system. The model is applicable to data-sharing applications in regulatory do-
mains; A concrete example is about sharing patient electronic medical records (EMR)



in healthcare information exchange networks, where data producers are hospitals, per-
sonal data are patients’ EMRs and consumers can be physicians diagnosing patient. The
details of the scenario will be elaborated in § 4.

The target computation of this work is about building the directory. A baseline
is that each data producer sends its local access-control list to the third-party directory
which enforces the access control when serving the directory requests. This baseline
however becomes problematic when the directory host is untrustworthy (e.g., by third-
party clouds): First, enforcing access control with integrity entails user authentication
and authorization to be done by a trusted party. Second, the local access-control list
reveals the binding between a person and her data producers, which can be privacy-
sensitive in many applications. For instance, in Healthcare scenarios, the binding be-
tween a patient and a rehabilitation center can reveal that this person may have a drug
problem. Even when the directory is protected by the host, an adversary can easily re-
cover the binding by performing network traffic analysis and extracting this information
from the side-channel of the consumer access trace.

We consider the privacy-preserving publication of directory. Existing data-privacy
definitions, such as k-anonymity, l-diversity, t-closeness, are applicable to our problem.
For instance, k-anonymity requires k people have their published lists of producers to
be the same. l-diversity requires people placed in the same group have l distinct lists
of producers. t-closeness requires each group of people to have similar producer lists
to all the producers. In this work, we mainly use the notion of ǫ-privacy [69] to drive
further presentation. The main idea of ǫ privacy is to bound the amount of noises or
false positives in the published list of producers by a percentage of ǫ. We will discuss
the application of our technique to other privacy definitions in § 6.2.

Formally, the notion of ǫ-privacy is adapted to our threat model by being aware of
background knowledge — we make the false positive producers indistinguishable from
true positives, such that the distribution of true positives is similar to that of false posi-
tives. What’s noteworthy is that the similarity is measured on the dimension of external,
public knowledge. For instance, in HIE, the similarity between hospitals (producers)
can be defined by hospital specialties and geographic locations.

Privacy-preserving publication algorithm: Achieving ǫ-privacy can be done by
a top-K algorithm. Concretely, given a list of true positive producers, the algorithm
finds K negative producers which are closest to the positive ones. The value of K can
be simply calculated from ǫ and the number of true producers |T |. Listing 2 presents
the top-K algorithm which entails the iterative computation of nearest neighbor with
similarity/distance defined by public knowledge. The distance computation depends on
the metric that represents producers and it can be Euclid distance, Hamming distance,
and others.

2.2 Threat Model and Security Goals

This work targets on the distributed publication of privacy-preserving directory with
untrusting data producers. In our problem, a data producer runs autonomously and dis-
trusts external parties including peer producers. Data producers get engaged in the dis-
tributed computation for publishing privacy-preserving directory where they exchange
information with each other.

In the threat model, an adversary can eavesdrop all messages being exchanged dur-
ing the distributed directory publication. For a producer, the adversary can be a network
eavesdropper or a peer producer. Formally, this is the semi-honest model used in for-
mulating a secure multi-party computation problem [21], where the adversary, being a
participant in the computation, honestly follows the protocol execution but is curious
about any data that flows through her during the execution. Multiple adversaries may
collude. Given a network of n producers, we consider the collusion can be up to n− 1
peer producers.



1 TopK(true_producers T, all_producers S){

2 R = T;

3 while (less than K iterations){

4 //find NN in S to T

5 for (any j in S){

6 for (any i in T){

7 min_dist_j = min(dist(T[i],S[j]),min_dist_j);

8 min_j = j;

9 }

10 min_dist = min(min_dist,d);

11 }

12 R.add(S[min_j]);

13 S.remove(S[min_j]);

14 }

15 return R;

16 }

Fig. 2: Top-K algorithm to achieve privacy

The security goal is to assure the data security in the directory-publication process.
Our security goal is to ensure perfect privacy (in an information-theoretic sense). In-
formally, it means an adversary’s view only depends on her input and public output. In
other words, the messages exchanged in the protocol execution when the input of other
parties take one value are “indistinguishable” from those when the input of other parties
take another value. More formal treatment of the MPC data security can be found on
classic texts [27].

Our threat model and security goal fit in the real-world requirement for policy com-
pliance in data sharing. In many regulatory domains, a data producer has the responsi-
bility of protecting the personal data it maintains and complying data-protection laws.
For instance, HIPAA [6] states any identifiable information about a patient cannot be
shared to any third-party, without the patient’s consent.

Non-goals of this work include directory data authenticity, producer-site data pro-
tection, key management, etc. Encrypting data on the directory is orthogonal, as the
content of directory is anyway disclosed to the adversary of network eavesdropper per-
forming traffic analysis.

2.3 Preliminary on Multi-Party Computation

In our protocol, we make use of existing multi-party computation (MPC) protocols
whose background is presented here. In general, the purpose of MPC is to evaluate
a function whose inputs are provided by different parties. Each input is private to its
provider party. The protocol of MPC ensures that it does not leak any information about
the private inputs even when the computation states are exchanged and shared. Differ-
ent computational models exist in MPC, including circuit and RAM. After decades of
studies, there are a variety of MPC protocols realizing different computation models,
specialized for different network scales (for two, three or many parties). In particular,
the protocol of GMW [37] is for multi-party, Boolean-circuit based MPC that is con-
structed based on the primitives of secret-sharing and oblivious transfers. The protocol
of multi-server Private-Information Retrieval (ms-PIR) [39, 46] is a RAM-based MPC
with multiple servers interacting a client on the computation of a simple selection oper-
ation (e.g., like a database selection).

MPC causes high overhead, mainly due to the “data -oblivious” representation of
the computation and cryptographic primitives being used in the construction. For more-



than-three party computation, the use of secret sharing also cause high overhead as the
shares need to be broadcast in the entire network. This unscalability (in data and net-
work sizes) makes it challenging to apply MPC for real-world distributed applications.

In practice, the common way MPC is used for many-party distributed applications
is based on the “outsourcing” paradigm. That is, given multiple input parties, the GMW
protocol distributes the input shares to a small number of computing parties (e.g., three
parties as in the Sharemind system [22]). The data security heavily relies on the non-
collusion assumption of the computing parties. In our work, we deem this outsourcing
model unsuitable for the target application. In HIPAA, a hospital cannot share patient
data with any third-party entity without patient consent. Therefore, our problem con-
siders each input party as computing party and the MPC protocol needs to run directly
on a medium or large network.

3 Secure Directory Publication with Pre-Computation

In this section, we present the secure directory publication and the optimization tech-
niques based on pre-computation. The general idea is to abstract the computation at dif-
ferent levels and precompute the computation at a specific level. This way, we present
a series of precomputation techniques (in § 3.2, § 3.3) that vary in their aggressiveness.
To start with, we present the naive approach based on multi-party computation (MPC)
without precomputation.

3.1 MPC-based Publication

Privacy-preserving directory publication is an MPC problem as the input data are spread
across multiple producers and are private to them. The naive way to realize directory
publication is thus to place the computation as in List 2 into the MPC; this approach
is denoted by M0. Given the circuit representation of MPC program, the algorithm in
List 2 can be easily converted to a circuit; the algorithm is a nested loop with pair-wise
distance computation, and the data/control flow is essentially oblivious. In particular,
we represent each producer by a vector (e.g., specialties of a hospital) and the similarity
between producers can be realized by hamming distance. More complex string similar-
ity computation is realized by dynamic-programming based algorithms which are also
data oblivious. The security of this approach inherent from that of MPC.

This MPC approach is inefficient especially in big-data sharing scenario where there
are a large amount of personal records. This is due to the expensive cryptographic primi-
tives (e.g., oblivious transfers, etc) used in MPC protocols. To improve the performance,
it relies on reducing the use of MPC in the distributed directory publication.

3.2 Full Precomputation Scheme

To reduce the use of MPC, we propose application-level precomputation. Given the
topK(T, S) algorithm in List 2 where only input T (the true producers) is private, we
pre-compute the algorithm on the public input S and all possible values of private input
T . The precomputation result is a table of results under different T values. Then, we
use the actual value of T to privately look up this table and to securely retrieve the
result entry. This stage can be realized in MPC using protocols such as multi-server
private information retrieval (ms-PIR) [39, 46]. Formally, the full precomputation is to
compute topK(2S , S) where 2S is the power set of S which includes all possible values
of private T . This scheme is named M1.

The precomputation is effective in our directory-publication problem, provided the
following characteristics. First the topK algorithm invokes some complex computation



such as distance computation (i.e. Line 7 in List 2) which involve background knowl-
edge about the producer profiles (e.g., hospital specialties and geographic locations).
Precomputation avoids placing these complex computations in MPC which reduces
overhead. Second, the precomputation only needs to be done once and its results can be
reused for publishing different people’s entries. Third, given the independence between
different values, one can leverage data-parallelism to facilitate the computation. Note
that the precomputation needs to be done for all possible value of T , that is, the power
set of all producers; although the possibility combination grows exponentially with the
number of producers, we only consider the data-producer network is moderately large.
For instance, in healthcare, a regional or statewide HIE typically consists of less than
hundreds of hospitals in a consortium.

The security of precomputation relies on the fact that no private value is involves
in the precomputation. Private data only occurs in the actual MPC computation.

3.3 Selective Precomputation Schemes

The full precomputation scheme considers the directory computation of topK as a
whole for precomputation. In this section, we dive into the computation topK() and
selectively precompute certain computation-intensive parts in topK(). Concretely, our
selective technique considers topK consists of distance-computation at different gran-
ularity. For one, it is to pre-compute the distance between T and S − T , considering
all possible values of T . This way, we have the selective precomputation, M2. For the
other, it is to pre-compute the distance between all pairwise data producers. This yield
the selective precomputation scheme, M3.

In M2, the precomputation considers all possible values of true-producer T . Given
a value T ∗, it precomputes the set-wise distance between T ∗ and S−T ∗. This produces
a distance table for the subsequent MPC. In the MPC, it first follows the computation
in List 2 until Line 6. Then for Line 6 to 9, it is replaced by a secure lookup into the
precomputation table. The lookup is realized by the ms-PIR protocol as in M1.

In M3, it precomputes the pair-wise distance matrix. That is, for any producer s1
and s2 ∈ S, it precomputes their distance and stores it in a table. Then, in the MPC
stage, it follows the algorithm in List 2 except that the call to dist(T[i],S[j]) is
replaced by a ms-PIR lookup to the precomputation table.

The security of these precomputation schemes are straightforward, as all private-
data related computations are placed inside the MPC/ms-PIR protocol whose security
is proven. The precomputation only considers the public data.

In summary, the topK computation for privacy-preserving directory publication can
be modeled as a process that issues a series of call to dist(T[i],S[j]). Our pre-
computation schemes partitions this computation process at different “break” points
and selectively places a certain partition to precomputation and the rest of computa-
tion into MPC/ms-PIR. Table 1 illustrates the three pre-computation schemes from this
computation-partitioning perspective.

3.4 Data-Parallel Pre-Computation

The pre-computation handles multiple independent input values. There is innate data
parallelism that can be exploited for better performing pre-computation. In our system,
we realize it by data-parallel pre-computation tasks where each task with distinct in-
put value runs in a dedicated thread. Different threads run concurrently and without
synchronization. We implement this data-parallel pre-computation framework on both
multi-core CPU and general-purpose GPU (GPGPU). Given the large number of pos-
sibilities in input values (and the simplicity of each task), GPGPU lends itself to the
parallel pre-computation due to its scalable execution model.



Table 1: Partitioning topK algorithm to the precomputation-MPC framework: For no-

tation in this table, T, S are true and all producers as in the topK() algorithm in List 2.

Di for i = 1, 2, 3 are the table storing precomputation results. MPC is secure multi-

party computation protocol and msPIR is a special MPC protocol for multi-server

private information retrieval.

Pre-compute MPC+msPIR

M0 - topK(T, S)
M1 D1 = topK(2S , S) LookupmsPIR(D1, T )
M2 D2 = dist(2S , S) topK2MPC(T, S) invoking LookupmsPIR(D2, T )
M3 D3 = dist(S, S) topK3MPC(T, S) invoking LookupmsPIR(D3, T [i], S[j])

In implementation, the CPU implementation is based on pthread library [13]. We
pack multiple possible input values in one thread and the number of threads is twice
the number of hyper-threads in hardware. The GPGPU implementation is based on
CUDA library [2]. In this case, the underlying NVidia-Tesla GPU has global memory
of 5 GB and threads run in one grid of 65,635 blocks, each of 1024 GPU threads. This
architecture allows to scale the number of threads to 227 and can easily handle the
producer networks of more than 27 parties.

4 Case Study: Healthcare Locator

In this section, we present the case study of applying our public locator service in health-
care information exchange networks (HIE). HIE is a health data-sharing network where
the data is patient electronic medical records (EMR), data producers are hospitals where
each patient visit results in the generation of new entries in an EMR, and data consumers
are clinical doctors. A typical application scenario is effective sharing patient’s EMR
during a clinical visit where the doctor diagnosing a patient needs to view the relevant
EMRs of the patient which are produced and stored in remote hospitals.

In this setting, our threat model and security goal apply. Patient EMRs are personal,
privacy-sensitive documents, the sharing of which must comply HIPAA [6]. Each hos-
pital has its local information-security infrastructure in place (e.g., access control and
user authentication).

A directory service, called HIE locator, can be used to facilitate the EMR sharing
between hospitals and to help discovery of a patient’s previous hospitals. In the normal
case, the list of hospitals is discovered by the doctor asking for it to the patient. However,
this is error prone (e.g., the patient forgets about it) and is inapplicable in emergency
(e.g., the patient is sent to hospital unconscious). Our privacy-preserving directory can
complement the common workflow to improve the quality of healthcare.

Figure 3 illustrates the abstract workflow of sharing EMRs in HIE networks. In
a clinic scenario, Alice, the patient, is seeing a physician (data consumer) who inter-
acts with HIE network (directory) to locate the hospitals Alice visited before (data
producer). In real HIE applications, the locator service runs healthcare software (e.g.,
OpenEMPI [11]) and is hosted by Amazon AWS alike public clouds. The public clouds
are not trustworthy and it entails the use of our privacy-preserving directory protocol
for publishing the HIE locator. Concretely, the life cycle of an EMR, including the
data-sharing flow, can be divided into three stages: 1) EMR production where Alice’s
EMRs are generated or updated to reflect her clinical visit; here we assume Alice has
given consent on delegating the EMR to the “producer” hospitals. 2) Locator (period-
ical) publication where the EMR updates are published to the public directory of HIE
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Fig. 3: Data-sharing workflow in the HIE: The figure illustrates how Alice’s medical record (EMR) stored

on Hospital H2 is used. It shows the entire life cycle of this EMR: The EMR was produced when Alice paid a clinical visit

to H2 (1). During the current visit in Hospital H1, Alice’s physician requires accessing her EMR in H2 (3). The physician

first contacts the third-party locator service hosted on a public cloud (which is constructed at an earlier time (2) ) and obtains

the list of candidate hospitals H2 and H3. Here, H3 is a noise for privacy preservation purpose. The physician then contacts

both H2 and H3 , and find EMR on H2 (4). Note that the physician can do so because she has the credential to access data

on both H2 and H3 . For an adversary obtaining the list of H2 and H3 , she cannot distinguish which hospitals are noise as

she does not have the credential.

locator in a privacy-preserving fashion. This is when our directory publication proto-
col is being invoked in the overall HIE workflow. 3) Locator service where the locator
serves the physician’s request to locate Alice’s producer hospitals (3.1) and find the
EMRs of interest there (3.2). In particular for stage 3.2, after the physician obtains the
list of potential hospitals (including both true and false positive ones), he will contact
each hospital and find EMRs by going through the local user authentication and access
control there.

Security analysis: In this data-sharing process, the EMR is produced and stored
securely (stage 1)) by assuming the producer hospitals’ secure and trustworthy local
healthcare infrastructure (e.g., faithfully enforcing access control and honest health IT
administrator).

The security in publishing the healthcare locator (stage 2)) is based on the security
of our privacy-preserving directory protocol, which is further based on the security of
MPC protocols [21] and computation-partitioning schemes.

The security in serving the healthcare locator (stage 3.1) is based on the fact that
sufficient amount of noise has been injected into the directory, such that an Internet
adversary performing traffic analysis and knowing the list of hospitals contacted by the
physician can not distinguish between the true positive hospitals and noises. The formal
notion of indistinguishability is presented in related work [69, 54, 68].

The security in searching and retrieving records on individual hospitals (stage 3.2))
is ensured by the security of local healthcare IT (for enforcing access control) and the
secure channel on the Internet (e.g., https and underlying PKI [35]).

5 Evaluation

In this section, we study the feasibility of our technique for HIE applications in a holis-
tic manner. Lacking benchmark dataset in existing literature, we first present a real



healthcare dataset to populate the HIE data producers and locator. This sets up a tar-
get scenario for the performance study which we will present next. The purpose of
performance evaluation is to answer the following question: What is the overhead of
privacy-preserving directory publication? and how effective is the proposed precompu-
tation technique in performance optimization?

5.1 Dataset

USNEWS dataset The USNEWS dataset [7] is used to model hospital profiles. The
dataset considers 16 primary hospital-specialty categories, such as cardiology and reha-
bilitation (the entire list of specialties is shown in Table 2). For each category, a hospital
is associated with a rating of three grades: “Nationally ranked”, “High-performing”,
and “Null”. We map “Nationally ranked” to value 2, “High-performing” to value 1, and
“Null” (i.e. the hospital does not have the department for this specialty) to value 0. Each
hospital is associated with other profile information, such as the resident city and state.
Currently, we select the dataset to include 40 top-ranked hospitals (out of 180) in the
New York metropolitan area.

Open-NY Health Dataset (”Sparcs”) To model patient-wise hospital visits, we use an
OPEN-NY dataset, called Sparcs [14]. The public dataset includes inpatient discharge
records with identifiable information removed. At the finest granularity, it provides per-
visit per-patient information (e.g., patient age group, gender, race, ethnicity and other
de-identified information), the facility information (e.g., zip-code, name, service areas)
and other per-visit information (e.g., admission type, the length of stay). Given the
identifiable patient information is removed, we model the per-patient visit history by
aggregating the records based on available quasi-identity information (i.e. age group,
race, ethnicity, etc).

Table 2: Specialty catalog in the USNEWS

dataset
IndexName

0 Cancer

1 Cardiology & Heart Surgery

2 Diabetes & Endocrinology

3 Ear, Nose & Throat

4 Gastroenterology & GI Surgery

5 Geriatrics

6 Gynecology

7 Nephrology

8 Neurology & Neurosurgery

9 Ophthalmology

10 Orthopedic

11 Psychiatry

12 Pulmonology

13 Rehabilitation

14 Rheumatology

15 Urology

Table 3: Experiment platform
New York Server

CPU Xeon(R) E5-2640 v3 @ 2.60GHz
2 processors/16 cores/32 hyper-threads

Memory245 GB

California Server
CPU Xeon(R) E5-2687W @ 3.10GHz

2 processors/16 cores/32 hyper-threads
Memory256 GB
GPGPUNvidia Tesla K20c

1 grid/65535 blocks/227 threads
Global Memory 5119MB

5.2 Performance of Directory Publication

We first conduct micro-benchmark to test the performance of data-parallel precompu-
tation. Then, we test the overall performance of secure directory publication, with a
machine of multi-core processor and in a geo-distributed setting.
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Fig. 5: Performance of directory publication based on precomputation and MPC



Micro-benchmark of Pre-computation The pre-computation is implemented with
data parallelism (as described in 3.4) and runs on multi-core CPU and GPGPU. We
report the time to pre-compute on GPGPU and that on CPU in Figure 4. This figure
also includes a baseline which is the 5% execution time of running M0 (i.e. without any
precomputation).

The performance result in Figure 4a shows that GPGPU based pre-computation is
effective in reducing the execution time, and its overhead is negligible comparing the
baseline. Concretely, the CPU based precomputation has its execution time to quickly
surpass the baseline when the network grows over 15 parties. The GPGPU-based pre-
computation has much lower overhead than the baseline for any network with less than
28 parties.

For more than 28 parties, all GPU threads are occupied and it will need multiple
iterations in transferring data from GPU’s global memory to host memory. As a result,
the GPGPU precomputation time increases exponentially, also reported in the Figure 4b
(note that the y axis is of log scale). With a single GPGPU card, the precomputation
time surpasses the baseline when the network is larger than about 40 parties. Here,
we stress that the typical scale of a healthcare consortium is usually medium-sized
(e.g., tens of hospitals and clinical centers). For nation-wide healthcare systems, there
may be thousands of hospitals. In this case, one can use more GPGPU cards to do the
precomputation in parallel, while retaining the efficiency.

Overall Performance with MPC The MPC-based implementation of directory pub-
lication is realized on the GMW software [25], an open-source MPC software and
Percy++ [12], an open-source multi-server PIR software. We note that our precom-
putation protocol only relies on the general MPC and PIR interface and other MPC
“backend” software can be used in our protocol. The GMW protocol exposes a circuit-
based programming interface that requires MPC programmers to write a generator for
Boolean circuit encapsulating the intended computation logic. At runtime, the GMW
protocol runs on multiple parties where each party generates and executes the circuit
by iterating through all gates in the circuit (following a topologically sorted order); for
each gate, the evaluation is synchronized across all parties. The GMW protocol makes
bit-wise use of two cryptographic primitives which provides the security of the proto-
col, that is, secret sharing [65] and oblivious transfer [62]. In particular, the per-gate
evaluation in GMW is to broadcast the shares of input-wire bit to all the parties in the
entire network. In our application, we manually express the logic of topK algorithm in
the GMW Boolean circuit, and tightly estimate the number of gates to pre-allocate so
that the unused GMW circuit can be optimized out. Our GMW-based implementation
consists of about 1500 lines of C++ code.

Multi-processing execution platform: We first run our protocol on a single node
with multi-processing. The machine specs are in Table 3 (the New York server). In this
setting, each process represents a data producer and runs a GMW party. In the execution,
each process holds a dedicated copy of the entire circuit allocated in its virtual-memory
space and without shared memory. The machine has memory large enough (245 GB in
total) to hold all circuit copies of the 39 parties without paging.

Results on multi-processing: To measure the performance of MPC, we used four
metrics, the number of AND gates (1), end-to-end execution time (2), memory con-
sumption (3) and communication costs (4). 1) We report the number of AND gates
in the compiled GMW Boolean circuit. This metric helps evaluate the performance
in a hardware-independent fashion. We only consider AND gates in a circuit and ig-
nore other gates (i.e., XOR gates) because evaluating XOR is free (i.e. free-XOR tech-
nique [26]) and evaluating AND gates dominates the cost. 2) We report the wall-clock
time from launching the first process to the completion of the last process. 3) We report
the size of the heap memory in GMW that stores all circuit gates. It is measured by the
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Fig. 6: Geo-distributed performance on the Internet

Valgrind framework (particularly the Massif memory profiler [64]). 4) We report the
party-to-party communication overhead, by monitoring all outbound messages through
the socket port of each process using IPTraf1.

In the experiment, we vary the number of parties (or data producers) and present the
result in Figure 5. Figure 5a reports the result of AND gate number and Figure 5b re-
ports wall-clock running time. They both show that the pre-computation based schemes
(i.e. M1,M2,M3) outperform the baseline without pre-computation. Notably, the M1

scheme causes the best performance with a speedup of 13 times (comparing the base-
line M0) in the setting of 39 parties. This result demonstrates the effectiveness of pre-
computation techniques that off-loads computation from the expensive MPC. In terms
of memory consumption in Figure 5c, M1 and M2 are close, reducing up to memory
consumption roughly by an order of magnitude comparing M0 and M3. It shows that
while M1 produces pre-computation results as additional data, its much smaller circuit
(for simple lookup operation in ms-PIR) makes the overall saving of memory footprint
as compared to the baseline M0. In Figure 5d, the communication overhead of M1

stays to be the smallest among the four schemes, with a saving of more than 2 orders
of magnitudes comparing M0. This is consistent with the result in the number of AND
gates.

Geo-distributed execution platform: We conduct the experiment with two servers
set apart more than 3000miles (one server in the State of New York, and the other in the
State of California). The bandwidth is 100 Mbps. The specification of the two servers is
illustrated in Table 3. Each server runs half of the parties with multiprocessing. Different
parties communicate through sockets. The precomputation runs only in one server.

Results with geo-distributed execution report the execution time of the four
schemes in the geo-distributed setting. The results are in Figure 6. For comparison, we
include the results in the single-node setting. The execution time grows super-linearly
with the number of parties in a network. For M0, M2 and M3, running them on two
geo-distributed nodes leads to longer execution time. Interestingly for M1, the geo-
distributed execution is faster than the single-node one. In this case, the performance
slowdown caused by the slower communication channels is offset by the performance
gain from the extra hardware (e.g., CPU) on multiple nodes. We suspect this perfor-
mance result is due to that the MPC is dominated more by the local computations (on
secret shares) and less by the network communications.

1 http://iptraf.seul.org/



6 Discussion

In this section, we consider the generalizability and extensions of the proposed tech-
nique beyond Healthcare Locators. We present the extension to new computation be-
yond exact-match lookup as in HIE locator and new privacy definitions beyond ǫ pri-
vacy.

6.1 Similarity-based Directory

In this application scenario, a data consumer may want to find data about a group of
“similar” people. Comparing the HIE locator that performs exact-match lookup (by a
person’s ID), the directory here performs similarity search. Take the healthcare domain
as an example. The similarity-based directory (e.g., PatientLikeMe.com) entails pub-
lishing the binding between a patient, say Alice, and the hospitals that store the EMRs
of patients who are similar to Alice, where the similarity can be defined on their syn-
drome, genome and other bio-medical features.

This directory can be constructed by extending the topK algorithm in Listing 2.
In particular, the list of true producers is interpreted as the producers storing the data
of people who are similar to the person being queried. The person-person similarity
is defined on the external background knowledge as mentioned above. In Line 7 of
Listing 2, the producer-producer distance is defined on the external domain knowledge
(e.g., hospital profiles in specialty, locations, etc).

6.2 Achieving Other Privacy Definitions

Our proposed technique can also be naturally extended to achieving other privacy def-
initions including k-anonymity, l-diversity, and t-closeness. A general framework for
these privacy definitions is that the original data is a table of sensitive data key, quasi-
identifier and public attributes. Achieving a specific privacy definition entails finding
a “partitioning” solution that partitions the data-table rows based on quasi-identifiers
into groups such that each group in the result will meet the privacy definition. There
are different algorithms such as generalization, suppression, perturbation, etc. In this
section, we consider the Mondrian algorithm [50] that represents the data records as a
point in a multi-dimensional space (assuming multi-dimensional quasi-identifiers) and
partitions the space by following kd-tree schemes and greedily refining the partition to
the smallest units.

One can express the Mondrian algorithm naturally in MPC and the pre-computation
stays effective because of extensive complex computation (e.g., computing distances)
are based on public knowledge.

In details, adapting the Mondrian algorithm to directory publication can be done by
following: For each person the producer vector is her multi-dimensional quasi-identifier
and her identity is the data attribute that needs to be searched publicly. In the Mondrian
algorithm, it entails determining whether it allows to split the current partition (1) and
if it does, finding the dimension and split value (2). In (1) and (2) it involves com-
plex distance computation; for instance, l-diversity requires counting the number of
distinct producer vectors in a partition and t-closeness requires computing the group-
wise similarity (among all records in a group). The number of distinct producer-vectors
and group-wise similarity can both be realized by a nested loop where each iteration
computes the pair-wise similarity between two records.

6.3 Data Updates

In many applications, data is being continuously generated. In this case, directory is
constructed and updated in batches. In each batch, the latest updates are reflected in the



directory incrementally. The topK algorithm can be evaluated for every batch by inter-
preting the list of all producers to all negative producers before the updates and
the list of true producers to be the new producers in the current batch. The con-
tent stored in the directory can be time-series data that each update batch is materialized
independently.

7 Related Work

7.1 Privacy-Preserving Data Federation

Multi-party noise generation Distributed differential privacy [32, 72, 61] is proposed to
support privacy-preserving aggregations. The randomized response [72] provides dif-
ferential privacy yet with uncontrollable noises and loss of utility. PrivaDA [34] is pro-
posed to achieve the optimal utility and performance optimization by adopting arith-
metic circuit based MPC for the noise generation. Existing multi-party noise genera-
tion takes a randomized approach and mainly targets for statistical aggregation (e.g.,
distributed differential privacy). This is inapplicable to our problem which features de-
terministic noise generation for the rigorous privacy guarantee, and needs to serve non-
aggregation queries.

PPI Privacy-Preserving Index or PPI is proposed to federate and index distributed
access-controlled documents [19, 18] and databases (e.g., patient medical records in the
HIE locator service) [69] among autonomous providers. Being stored on an untrusted
server, PPI entails preserving the content privacy of all participant providers or hospi-
tals. Inspired by the privacy definition of K-anonymity [67], existing PPI work [19, 18,
69] follows the grouping-based approach; it organizes providers into disjoint privacy
groups of size K , such that providers from the same group are indistinguishable. How-
ever, K-anonymity, while easy to construct, does not guarantee high-quality privacy
preservation. In addition, early approaches of PPI construction [68, 54] are based on
randomized responses [72], an iterative protocol that takes indefinite number of rounds
to converge and may produce incorrect result (with certain probability). To avoid those
drawbacks, ǫ-PPI combines randomized responses with a minimal use of multi-party
computation to construct PPI correctly and efficiently.

Multi-party join DJoin [60] is a federated database system built on top of multi-party
joins, which are realized by privacy-preserving set intersections and general-purpose
MPC for re-distributing noises. Its performance practicality has been demonstrated in
small network with 3 to 5 parties. Multi-party joining has the potential to be applied
in private record linkage problem (PRL) which is to match and link remote records of
the same principle (e.g., patient in the healthcare domain) across multiple sites. While
PRL has been studied for decades in the health-care domain, the recent advances in-
clude improved linking precision [44], providing privacy guarantee [24] and building
a practical system [70, 8, 11]. Particularly in [24] the authors identify the performance
problem of using MPC for PRL and propose to publish differential private synopsis of
tables to avoid MPC and improve performance. Our work, focused on noising locator
service, is orthogonal and complementary to the record linkage and joining, and can be
integrated to an overall federated system of HIE.

7.2 Distributed Privacy-Preserving Mining

Distributed privacy-preserving data mining [71, 45] relies on algorithm/query-specific
approaches to secure data-mining computations. For instance, association rule mining



over vertically-partitioned databases [71, 45] reduces to scalar product which is secured
by the impossibility of solving n equations in more than n unknowns. In addition, by
assuming no collusion at all [22, 31], the secure data mining can be realized by ef-
ficient operations such as secret sharing and random number generation without us-
ing expensive protocols (e.g., oblivious transfers [62]). Our work is distinguished from
privacy-preserving data mining in that we consider strong provable security against the
worst-case collusion (e.g., all other parties may collude) which entails an extensive use
of cryptographic protocols at fine granularity, rendering performance a critical issue.

7.3 MPC Frameworks and Optimization

In the last decade, practical MPC has attracted a large body of research work with a fo-
cus on programming language support and optimization [48, 22, 57, 40, 25, 21, 63, 20,
16]. Practical MPCs are built on top of cryptographic protocols, such as Yao’s gar-
bled circuits [73] or GMW protocol [37], with protocol-level optimization, such as
Oblivious Transfer (OT) extensions [41], or for stronger security, such as resilience
with dishonest majority [28]. The MPC protocols assume a circuit interface to express
the computation, and practical programming support focuses on compiling a program
written in a high-level language into the circuit. Existing MPC protocols and systems
mainly focus on a small-scale computing that involves 2 or 3 parties. To the general
MPC problem, a fundamental trade-off exists between performance and computation
generality; for instance, randomized responses [72] and other techniques for privacy-
preserving data mining take an ad-hoc and domain-specific approach, which can be
efficient at scale. By contrast, the general-purpose MPC is rather expensive.

MPC Optimization High performance overhead stays to be one of the major hurdles to
applying MPC in practice, which is partly caused by MPC’s fine-grained use (e.g., per
single bit) of expensive cryptographic primitives, and the need to transfer all possible
computation results for the “obliviousness” of computation flow. Various optimization
techniques are proposed to utilize the programming semantics to reduce the circuit size
and depth (e.g., by using the hardware synthesis tools [66, 29]) and optimize the re-
source utilization (e.g., just-in-time compilation and pipelined execution [40, 48]). Pro-
gram analysis [47] is used to automatically infer privacy-sensitive data and constraints
MPC only to the sensitive data. [49] conducts pre-processing on verification of MPC
and results in general transformation from a passively secure protocol to an actively
secure one. Our MPC optimization is currently specific to the directory construction
problem, while holding the potential to apply to more generic computations.

Some programming frameworks support high-level programming languages with
compilers (e.g., Fairplay(MP) for SFDL [57, 21], Sharemind for SecreC [42], CBMC-
GC for ANSI C [36], PCF for C [48], Wysteria for a high-level typed specification
language [63], PICCO for C with extension [75]), while others expose a quite low-level
circuit based interface (e.g., GMW [25], JustGarble [20], OTExtension [16]); partic-
ularly both boolean circuit (e.g., GMW) and arithmetic circuit (e.g., SEPIA [23]) are
considered. In addition, some advanced technique designs based on hybrid model that
combines both boolean or arithmetic circuits (e.g., ABY [30], TASTY [38], Wyste-
ria [63]).

7.4 Anonymization Definitions

Publishing public-use data about individuals without revealing sensitive information
has received a lot of research attentions in the last decade. Various anonymization
definitions have been proposed and gained popularity, including K-anonymity [67],
l-diversity [55], t-closeness [51], and differential privacy [33]. In addition, prior



work [58] formally studied the information leakage under background knowledge
attacks by formulating the problem using a proposed declarative language. These
anonymity notions however are generally inapplicable to the PPI problem – they are
mainly designed for statistic analysis or aggregation style computation where the result
is global per-table data, while PPI needs to serve queries specific to individual records.

r-confidentiality [74] is a privacy notion specific to the PPI problem. It assumes a
probabilistic attacker on PPI and considers the increase of attack success-rate with/with-
out using the background knowledge. By contrast, our proposed ǫ-privacy considers to
bound the attack success-rate (instead of the increase) which we believe provides better
privacy control.

8 Conclusion

This work presents an MPC-precomputation framework tailored for privacy-preserving
data publication for data-sharing applications. The pre-computation framework im-
proves the performance by minimizing the private-data computation and realizing the
public-data only pre-computation in a data-parallel fashion. Several pre-computation
policies are proposed with varying degrees on the aggressiveness. It is demonstrated
that the proposed pre-computation scheme is applicable in real health-care scenarios.
Based on real datasets and implementation on open-source MPC software, the perfor-
mance study shows that the proposed pre-computation achieves a speedup of more than
an order of magnitude without security loss.
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