
Guidelines for Online Network Crawling: A Study of Data
Collection Approaches and Network Properties

Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan
Department of Electrical Engineering and Computer Science, Syracuse University

Syracuse, NY
{kareekij,rlaishra,susounda}@syr.edu

ABSTRACT
Over the past two decades, online social networks have attracted
a great deal of attention from researchers. However, before one
can gain insight into the properties or structure of a network, one
must first collect appropriate data. Data collection poses several
challenges, such as API or bandwidth limits, which require the
data collector to carefully consider which queries to make. Many
online network crawling methods have been proposed, but it is not
always clear which method should be used for a given network.
In this paper, we perform a detailed, hypothesis-driven analysis of
several online crawling algorithms, ranging from classical crawling
methods to modern, state-of-the-art algorithms, with respect to the
task of collecting as much data (nodes or edges) as possible given a
fixed query budget. We show that the performance of these meth-
ods depends strongly on the network structure. We identify three
relevant network characteristics: community separation, average
community size, and average node degree. We present experiments
on both real and synthetic networks, and provide guidelines to
researchers regarding selection of an appropriate sampling method.

KEYWORDS
Experiments; Online Sampling Algorithm; Network Crawling; Net-
work Sampling; Complex Networks.
ACM Reference Format:
Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan. 2018.
Guidelines for Online Network Crawling: A Study of Data Collection Ap-
proaches and Network Properties. InWebSci ’18: 10th ACM Conference on
Web Science, May 27–30, 2018, Amsterdam, Netherlands. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3201064.3201066

1 INTRODUCTION
The study of complex networks has become a critical aspect of
research in a wide range of fields. Often, network data is collected
from online sources, including online social networking sites (OSNs)
such as Facebook or Twitter. Such sites may provide APIs, which are
a convenient channel for accessing data. However, the data collec-
tion process can require a significant amount of time. Thus, when
collecting data, efficiency is extremely important. In this paper, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5563-6/18/05. . . $15.00
https://doi.org/10.1145/3201064.3201066

consider the problem of network sampling through crawling,
or online sampling, in which the only way to obtain more in-
formation about the network is to query observed nodes for their
neighbors, and thus expand the observed network. In this paper,
we use network sampling and network crawling interchangeably.

In network crawling, there are a number of important goals,
such as finding samples that are unbiased with respect to some
property, locating ‘important’ nodes, or finding a sample that pre-
serves information flow patterns. In this work, however, we focus
on the efficiency of the crawling algorithm itself (i.e., How quickly
nodes and edges can be discovered through the crawling process).
Our first considered goal is maximizing the total number of nodes
observed, which we refer to as the node coverage goal. Second goal
is maximizing number of edges observed, which we refer to as
the edge coverage goal. These two goals have been closely tied to
other application-specific crawling goals, including crawling for
census-type applications (i.e., collecting node or edge attribute in-
formation) [10] and crawling to preserve community structure [15].

While network crawling is a critically important step in a net-
work analysis tasks, it is often difficult for users to select a crawling
technique. The literature contains a large number of crawling algo-
rithms, and it is rarely clear which method is best to use for a given
network. Existing work in the literature has typically attempted to
determine which crawling method is the ‘best’. In this paper, rather
than arguing for usage of one single crawling algorithm, our goal
is to investigate the relationship between network structure and
crawler performance. More specifically, we investigate those net-
work structural properties that govern the ability of a crawler being
able to move between ‘regions’ of a graph, and demonstrate that
these features have a strong effect on the performance of various
crawling methods.

However, the knowledge of how structural properties affect the
performance of a crawler might not be immediately helpful, because
one does not know ahead of time what the properties of network
are! To address this, we consider broad categories of networks, and
show that for networks in the same category (which exhibit similar
structural properties), the crawling methods tend to have similar
performance relative to one another. Based on these properties, we
provide general guidelines on selecting a crawling method for a
particular network type.

Our work has several novel contributions:

(1) To the best of our knowledge, this is the first work to system-
atically examine the effect that network structural properties
have on the performance of network crawling methods.

(2) We provide an extensive, scientific analysis of the relation-
ship between network structural properties and the per-
formance of popular crawling algorithms. Unlike existing

https://doi.org/10.1145/3201064.3201066
https://doi.org/10.1145/3201064.3201066


WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan

works on sampling algorithms, which typically perform a
high-level comparison of crawling methods, our goal is to
understand the relationship between network structure and
crawler performance.

(3) We provide a framework for classifying network crawling
algorithms, based on how their performance changes as net-
work structure changes, and categorize networks according
to their structural properties.

The rest of this paper is organized as follows. In the following
Section 2, we give an overview of the existing works in this area.
In Section 3, we discuss the problem, preliminaries, details of the
network crawling methods and the network structural properties of
interest. We describe our experiments and discuss about the results
in Section 4. We present conclusion in Section 5 and future works
in 6.

2 RELATEDWORK
Work on network sampling can be separated into two main scenar-
ios: down-sampling and sampling through crawling. When down-
sampling, one possesses the complete network dataset, and wishes
to scale it down to some desired size (perhaps because the entire
dataset is too large to fit into the memory or would take too long
to analyze). The good sample network will maintain the relevant
properties and characteristics of the original network.

In the crawling scenario, one starts with no information about
the network other than the knowledge of a single node. One can
obtain addition information by iteratively performing queries on
observed nodes (e.g., through an API) to collect the information
about the unobserved network. In this way, the observed sample
is expanded from the single initially observed node. While both
of these problems are often broadly referred to as ‘sampling’, they
require intrinsically different approaches. In this work, we consider
algorithms that are used in the crawling scenario.

Due to the vast amount of literature in this area, we cannot pro-
vide a complete discussion of the field. For a more comprehensive
discussion, we refer the reader to the excellent survey in [2].

Algorithms for Network Crawling: Network crawling has
been used extensively to collect data from the Internet and other
large networks like the WWW and online social network platforms.
One of the largest online social network studies is presented by
Mislove, et al. They study four online social network sites (Orkut,
Youtube, Live Journal and Flickr) and collect the data by using a
BFS crawler [16]. A similar study on other online social networking
sites, such as CyWorld and MySpace, is presented by Ahn, et al. in
[3]. However, the sampled networks produced by a BFS crawler
contains bias. Kurant, et al. suggest a solution for correcting the
bias from a BFS crawler [9]. Similarly, Gjoka, et al. propose another
approach baseed on Metropolis-Hastings-based Random Walk for
crawling an unbiased sample and use it for collecting Facebook
network [7].

There has also been a great deal of interest on network crawl-
ing for specific applications. Salehi, et al. introduce PageRank-
Sampling [18] to preserve community structure. Avrachenkov, et
al. present a greedy crawling method, called Maximum Observed
Degree (MOD), for maximizing number of nodes in the sample in
[4] by querying the node with the highest observed degree in each

step. A similar approach is used by the OPIC algorithm, which con-
siders PageRank as a measurement of importance [1]. Results show
that both MOD and OPIC significantly outperform other methods.

Analysis of Sampling Algorithms: There has also been a sig-
nificant amount of work comparing the performance of sampling
algorithms. In [12], Leskovec and Faloutsos study the characteris-
tics of different down-sampling methods and attempt to find out
the best method that produces the smallest bias for all the defined
network properties, arguing that Random Walk is the best at pre-
serving network properties. Similarly, Kurant, et al. analyze BFS
crawler [8]. The experiment results show that the crawler is biased
towards high degree nodes.

Ye, et al. present a large-scale empirical study that compares
crawling methods on the basis of performance, sensitivity, and
bias, on the tasks of node and edge coverage [19]. Ahmed, et al.
provide a detailed framework for classifying sampling algorithms
and examine the performance of various algorithms at the task
of preserving graph statistics [2]. While these works perform an
important evaluation of existing algorithms, they typically conduct
a high-level comparison of sampling methods.

In contrast, the purpose of our work is to perform a detailed
analysis of the effects of network structure on the performance of
crawling algorithms, rather than evaluating the performance of
algorithms, we seek to answer how and why algorithms succeed or
fail. Thus, we can give some insights and guildlines on how to pick
an appropriate method when data collection need to be performed.

Community Structure: We draw heavily from the literature
on community structure in networks. To characterize the strength
of communities in networks, we use the popular modularity metric
and the corresponding Louvain method for optimizing modular-
ity [5]. Mixing between communities is an important part of our
analysis: for example, Leskovec, et al. suggest that communities are
well defined and distinct if they are small, but that large communi-
ties tends to mix with one another [13].

Our work differs from existing work in important ways: (1) We
present a comprehensive analysis of sampling algorithms for the
crawling scenario (in contrast to most existing work, which is for
down-sampling). (2) Our primary goal is not to determine which
existing algorithms are best, but rather to gain insight into the
interplay between network structure and crawler performance, and
thus understand why certain algorithms perform better or worse.
(3) We provide guidelines for selecting the appropriate sampling
approach if the network category is known.

3 NETWORK SAMPLING THROUGH DATA
CRAWLING

Suppose that we are collecting data from an online social network
through its API, and we only have 24 hours to collect data. The pro-
cess starts with one known user account. As our first step, we must
query that user, and the server responds with a list of neighbors.
Then, one of these returned users is selected for the next query,
and so on. This process is repeated until 24 hours have passed. The
problem is to decide which node to select for each query such that
the total number of nodes or edges observed is maximized.



Guidelines for Online Network Crawling WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands

3.1 Problem Definition
Let G = (V ,E) be a static unobserved, undirected network. We are
given a starting node ns ∈ V and a total query budget b. To collect
data, we may perform a query on an previously-observed node. In
this work, we assume that in response to a query, we receive all
neighbors of the queried node. In each step, the crawler queries
an observed-but-not-queried node (i.e., a node that was observed
as a neighbor of a previously-queried node, but has itself not yet
been queried). This process is repeated until b queries have been
made. The output is a sample graph S = (V ′,E ′), whereV ′ ⊆ V and
E ′ ⊆ E, containing all nodes and edges observed. Table 1 shows the
notation used in the paper.

Table 1: Notations and Definitions.

Notation Definition
ns A seed node from which the crawler begins.
V

′

o The set of nodes that have been observed but
not queried (‘open’ nodes).

V
′

c The set of nodes that have been observed and
queried (‘closed’ nodes).

V
′

The set of all observed nodes, V
′

= V
′

o ∪V
′

c .
E
′

The set of all observed edges.
dv The degree (number of neighbors) of node v.

We consider two different sampling goals:
Goal 1: Node Coverage - Collect a sample graph S = (V ′,E ′),

where V ′ ⊆ V and E ′ ⊆ E so that the number of nodes in V ′ is
maximized.

Goal 2: Edge Coverage - Collect a sample graph S = (V ′,E ′),
where V ′ ⊆ V and E ′ ⊆ E so that the number of edges in E ′ is
maximized.

We selected these goals because they are closely related to many
other application-specific goals: for example, the community-based
sampling techniques in [15] use the node coverage goal to identify a
sample that captures the community structure of the network. The
authors in [14] also use this goal to identify a set of most influential
nodes across several centrality measures. We do not discount the
importance of crawling for other applications (such as obtaining
unbiased samples), but these are fundamentally different problems.

Note that a sampling algorithm that is successful with respect
to one of these goals may not be successful with respect to the
other. For example, suppose an open node (i.e., a node that has
been observed through other nodes but not yet queried) has many
unobserved edges adjacent to it, but these edges lead to other open
nodes. Querying this node would lead to a large increase in the
number of observed edges, but not the number of observed nodes.

3.2 Online Crawling Methods
In our study, we compare nine popular crawling methods. As men-
tioned in the previous section, the crawler expands the sample by
selecting for query a node that had been previously observed. The
details of each algorithm are as follows:
Random Crawling (Rand): In each iteration, the crawler ran-

domly selects a node from V
′

o for the next query.

RandomWalk (RW): In each iteration, the crawler transitions
to a random neighbor of the node that was just queried. Nodes
can be visited multiple times but crawler only performs a new
query on nodev ∈ V

′

o if it had not been previously queried. The
results of Random Walk came out on top in [12].

Breadth-First Search (BFS): The crawler selects the node that
has been in the list of unqueried nodes the longest (i.e., First-In,
First-Out). BFS is widely used for network sampling because of
its simplicity. In addition, the obtained network gives a complete
view (all nodes and edges) of a particular area in the graph,
which may be useful for network analysis. An example of one
of the largest network analysis using BFS is presented in [16].

Snowball Sampling (SB): The crawler acts similarly to BFS, ex-
cept that when a node is queried, onlyp fraction of its neighbors
are added to the queue for future queries. Here, we set p to 0.5.
Experimental results in [3] show that this approach is capable
of discovering hub nodes (i.e., nodes with high degree), which
helps the crawler in expanding to unexplored areas in the graph.

Depth-first Search (DFS): The crawler acts similarly to BFS, ex-
cept that a node is selected in LIFO fashion (i.e., Last-In, First-
Out).

Maximum Observed Degree (MOD): This is a greedy algorithm
based on the intuition that a node with high observed degree
likely has high unobserved degree. For each query, the crawler
selects an open node with the highest observed degree [4].
Experimental results in [4] demonstrated that MOD substantially
outperforms other algorithms at the node coverage task.

Maximum Observed PageRank (PR): The crawler acts similarly
to MOD. The PageRank score of every observed node is calcu-
lated when new nodes (or new edges) are added to the sample
graph. The node with the highest observed PageRank score is
selected for the next query. As argued in [18], this algorithm
can capture the community structure of the network.

Online Page Importance Computation (OPIC): This is an on-
line algorithm that aims to calculate the nodes importance score
without recalculating from the whole sample. The algorithm
only updates the scores of the most recently queried node and
its neighbors. Initially, each observed node is given an equal
amount of “cash". In each step, the crawler selects the node with
the most cash and its cash is distributed evenly to its neighbors.
Results in [1] show that OPIC can compute the importance of
nodes as in standard methods, but it is faster.

Volatile Multi-armed Bandit (VMAB): VMAB is a reinforcement
learning algorithm that balances exploration and exploitation.
This approach is used for finding target nodes on a network
in [6]. The UCB1 algorithm is used for selecting an arm. Each
arm represents a set of unqueried nodes with equivalent struc-
tural properties (we use ‘common neighbors’, as described [6],
for the implementation in our experiment). In [6], VMAB mod-
ifies UCB1 to handle non-stationary bandits, because arms
can appear, disappear or merge (because nodes are added to
the sample which affect the change of structural properties).
In each iteration, the crawler selects the arm that maximizes
W̄i +Cp ·

√
2·ln(n−zi )

Ti (n)
and randomly picks a node from this arm

to query.



WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan

3.3 The Effects of Network Structure on
Algorithm Performance

The purpose of our study is to examine the effects of network struc-
tural properties on the relative performance of network crawlers.
It is known that crawler performance may vary substantially by
network [19]. This variance must be due to differences in struc-
tural properties of the underlying networks: but what are those
properties, and how do they affect the comparative performance of
crawling methods?

3.3.1 Structural Properties of Interest. Our hypothesis is that
the performance of crawling methods is mostly affected by the ease
with which a crawler can move between regions of the graph. If it
is difficult to move between regions of the graph, and the crawler
gets stuck in one general area, then it will eventually start seeing
the same nodes and edges over and over again. We thus consider
three structural features:1

Community Separation: We consider a community to be a
subgraph with high internal density and relatively few edges to the
rest of the graph. To determine how well-separated communities
are, we use modularity Q , as defined by Newman [17], which is
defined as follows:

Q =
1

2m

∑
vm

[
Avw −

dvdw
2m

]
δ (cv , cw ),

whereA,m and di are the adjacency matrix, total edges, and degree
of node i , respectively. δ (cv , cw ) is a delta function which returns
one when node v andw are in the same community. Otherwise, it
returns zero. The higher the modularity, the better the separation
between communities, and so a crawler is more likely to get trapped
in a region. We find communities using the Louvain method [5].

Average Degree: If the average node degree is high relative
to community size, then a node is more likely to have neighbors
outside of its own community, making it easier for a crawler to
move between regions. It is defined as

davд =

∑
v ∈V dv
m

.

Average Community Size: As described above, community
size is relevant in conjunction with average degree.

CSavд =

∑
ci ∈C |ci |

|C |
,

whereC is a set of communities, ci is the set of nodes in community
i and | · | refers to a cardinality of a set.

3.3.2 Properties of Real Networks. As we will see, the properties
described above have a large effect on crawler performance: but if
one begins without any knowledge of the network, how can one
take advantage of our results to select an algorithm? As it is well-
known, networks of the same type tend to have similar structural
properties. For example, social networks tend to have more near-
cliques than citation networks, which are more likely to have many
long chain-like structures. Unfortunately, while it is not possible
for a single algorithm to be the best on every network, we are able
to produce general guidelines for selecting a crawling algorithm
1We explored other structural properties, such as clustering coefficient, but these three
emerged as having the greatest effect on crawler performance.

for a particular type of network. These results are presented in
sections 4.1.2 and 4.2.

4 EXPERIMENTAL STUDIES
We first perform a series of controlled experiments on synthetic
networks, in which we methodically modify structural properties
of the network and observe the effect of these variations on the
performance of the crawling algorithms. We then validate our ob-
servations with real world networks. Using these results, we group
the crawling algorithms into three distinct classes. We addition-
ally group the network datasets into categories based on domain.
Within each category of network, crawling algorithms show con-
sistent performance, allowing a user to select the method that is
best for a particular category.

4.1 Effects of Network Properties
As mentioned in the earlier section, we consider three network
structural properties: the community separation , the average de-
gree, and the average community size.

4.1.1 Synthetic networks. We use the LFR network model [11]
to generate synthetic networks. This model is usually used as a
benchmark networks for evaluating different community detection
algorithms. The model allows us to control average node degree,
community size, and community mixing. We set each network to
have 5000 nodes and a maximum node degree of 300. We vary
the community mixing parameter µ (the fraction of edges crossing
between communities, ranging from 0 to 1), average node degree,
and community size.

Note that community mixing µ and modularity Q are inversely
related, meaning that networks with high community mixing will
have low modularity. Here, we consider values of µ from 0.1 to 0.9,
average degrees from 15 to 200, and average community sizes from
100 to 2500. Higher values of µ indicate fuzzier community borders.

For each set of parameters, we generate 10 networks. We gen-
erate multiple graphs with same parameters instead of running
multiple experiments on a single generated graph, because we want
to reduce the error or bias that might come from the generated
graphs. We consider budgets of up to 1000 queries, representing
sampling up to 20% of the nodes in the network.

Based on our experimental results, we are able to categorize
the nine crawling algorithms into three groups (G1 - G3). The
algorithms in each groups are as follows:

G1: Node Importance-based algorithms: Maximum observed
degree, OPIC and Maximum observed PageRank

G2: RandomWalk
G3: GraphTraversal-based algorithms: BFS, DFS, SB, Random,

and VMAB

A summary of how structural properties affect each group is
shown in Table 2. We plot results for methods from each group in
Figures 2-4. For brevity, we show only results for the best method
in each group: MOD, Random Walk and BFS. Results are as follows:

Node Coverage: Figure 2 depicts results for the node coverage
task as average degree and average community size are varied,
with community mixing fixed at 0.1 (i.e., few connections between



Guidelines for Online Network Crawling WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands

Table 2: Categorization and summary of the performances of sampling algorithms.

Coverage Property G1: Node Importance-Based G2: Random Walk G3: Graph
Traversal-Based

Node

Community
Separation

Excellent performance when community overlap is
high (i.e. low Q or high µ).

Stable

StableAverage
community

size

Strong performance when communities are large if µ is
low. Community size does not matter if µ is high.

Average
degree

Strong performance when average degree is extremely
low (<10) even if µ is low. Otherwise, stable

Performance
improvement when
average degree

increases.

Edge

Community
Separation

Excellent performance when community overlap is
high (i.e. low Q or high µ).

Stable
Stable

Average
community

size

Strong performance when communities are large if µ is
low. Community size does not matter if µ is high.

Average
degree

Strong performance when davд is low (<10) even if µ is
low. Otherwise, performance drops when davд

increases.

Performance drops
when davд increases.

Best Method in Group MOD RW BFS

communities). Plots further to the right have larger average com-
munity sizes (CSavд ranges from 100 to 2500), and plots higher
on the y-axis have higher average degrees (davд ranging from 7
to 100). Within each plot, the x-axis shows the fraction of nodes
queried, and the y-axis shows the fraction of nodes observed in the
sample. Figure 1 illustrates the results when community mixing is
varied, and average degree and average community size are fixed
at 15 and 300, respectively. Figure 3 shows results when average
degree is varied, when average community size is fixed at 300 and
community mixing at 0.6. For brevity, we cannot show results for
all parameter settings, but the depicted results are representative
of the full set of results. We make several important observations
from this set of plots:

G1 -Node Importance-basedmethods:Thesemethods greed-
ily pick a node with high centrality (degree or PageRank), and tend
to behave similarly. This is not surprising, as there is a high correla-
tion between the various centrality measures. The performances of
methods in G1 significantly improve as the size of the community is
increased. If community mixing is low (fewer connections between
communities), and communities are small, G1 methods perform
poorly, as they tend to get ‘stuck’ in a region: if there are few
connections between communities, these methods have difficulty
transitioning to new communities. They thus exhibit diminishing
marginal returns: while no method will query the same node mul-
tiple times, they tend to query nodes with similar neighborhoods,
resulting in redundant information. One interesting observation
is that when the average degree is extremely low (last row on Fig-
ure 2), G1 methods perform worse than both G2 and G3 methods
for low query budgets, but the performance rapidly increases and

outperforms the other methods when budget increases. We ob-
served the same behavior for every generated network with the
same parameter setting that has average degree less than 10.

As illustrated in Figure 1, G1 methods perform better when µ
increases. We can see similar results as shown in Figure 3. When
community mixing is high (there are many connections between
communities), G1 methods are consistently the best, as a node out-
side of the crawler’s current community may have a high observed
degree, so the crawler can escape easily.

G2 - RandomWalk: As we can clearly see from Figure 2 and 3,
the Random Walk crawler is a very stable algorithm. Its perfor-
mance seems to be unaffected by all considered properties. Since

Figure 1: (Node coverage) Results on synthetic networks
with different values of community mixing µ when average
degree is fixed at 15 and average community size is fixed at
300. For the individual plots, the x-axes show query budgets
(0% to 20% of total nodes). The y-axes show the percent of
node observed (0% to 100%). G1 methods improve as µ in-
creases, while other methods are stable.



WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan

Figure 2: (Node coverage) Results on synthetic networks
with different values of davд and CSavд when community
mixing µ is fixed at 0.1. Plots to the right (along x-axis) have
higher average community sizes, while plots near the top
(along y-axis) have higher average degree. For the individual
plots, the x-axes show query budgets ranging from 0% to 20%
of total nodes in the network. The y-axes show the node cov-
erage (measured in % of total nodes observed), ranging from
0% to 100%. The performance of theG2 randomwalkmethod
is stable. G1 methods improve when CSavд increases, while
G3 methods improve when davд increases.

%
 N

o
d

es
 F

o
u

n
d

Query Budget

15 25 100

Average degree

Figure 3: (Node coverage) Results on synthetic networks
with different values of average degree, when community
mixing fixed at 0.6 and community size is 300. For the in-
dividual plots, the x-axes show query budgets (0% to 20% of
total nodes). The y-axes show the percent of node observed
(0% to 100%). G1 outperforms the others methods. The per-
formance of G3 methods improve as average degree and av-
erage community size increases.

the RandomWalk crawler selects next node randomly from the last
queried node’s neighbors, the crawler can escape from the current

region easily, while leaves some partial region unobserved. How-
ever, the crawler has a freedom to move back and forth, partially
explored region, and them discover more nodes of this region in
later steps.

G3 - Graph Traversal-basedmethods: These methods are not
meaningfully affected by community size. These methods expand
the frontier of the sample uniformly, and so can easily move be-
tween graph regions. However, the choice of next queried node
depends on when that node was put into the query queue. It is
likely that nodes with small and medium degree will be queried
and the number of new nodes added to sample will be low. The
performance of these methods improves as the average degree in-
creases (moving up the y-axis in Figure 3), because they can quickly
reach and escape the boundaries of a community. For large average
degree, these methods outperform Random Walk sampling. Note
that, VMAB is put into this group because of its performance. VMAB
often performs poorly at the task of node coverage because new
arms appear frequently, resulting in nearly random query choices.

Figure 4: (Edge coverage) Results on synthetic networks
with different values of average degree, when community
mixing fixed at 0.6 and community size is 1000. For the in-
dividual plots, the x-axes show query budgets (0% to 20% of
total nodes). The y-axes show the percent of edge observed
(0% to 100%). The performance of G3 are stable, while G1 and
G2 show a decrease in performance.

Edge Coverage Task: Figure 5 is interpreted similarly to Figure 2,
showing how the performances of G1 - G3 change as average degree
and community sizes vary, with fixed low community mixing (µ =
0.1). When varying µ, performance is similar to the node coverage
task, as shown in Figure 1, and due to space constraints, we do not
include it. As before, these limited results are representative of the
full set of results. The key observations are as follows:

G1 - Node Importance-based methods: These methods are
the best algorithms if 1) community mixing µ is high or 2) commu-
nities are large, even if community mixing µ is low (along the x-axis
in Figure 5, the performance increases). As in the node coverage
task, having fuzzy borders between communities leads to improved
performance by G1 methods. However, if communities are very
large, then even if a G1 method gets ‘stuck’ in a single community,
it is still able to discover many edges (here, ‘large’ is measured
with respect to the sample budget). G1 methods also show the best
performance when average degree is extremely low. However, the
performance degrades when average degree increases as shown in
Figure 4.



Guidelines for Online Network Crawling WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands

Figure 5: (Edge coverage) Results on synthetic networks
with different values of davд and CSavд when community
mixing µ is fixed at 0.1. Plots to the right have higher average
community sizes, while plots near the top have higher aver-
age degree. For the individual plots, the x-axes show query
budgets ranging from 0% to 20% of total nodes in the net-
work. The y-axes show the edge coverage (measured in % of
total edges observed), ranging from0% to 100%. TheG3meth-
ods are stable throughout. The G2 method is not affected by
average community size, but decreases as average degree in-
creases. G1 algorithms improve as community size increases,
but worsen as average degree increases.

G2 - RandomWalk: The performance seems to be very stable
when community size increases regardless of whether community
mixing µ is high or low.

G3 - Graph Traversal-based methods: These methods are
stable as parameters vary, but these methods generally perform
worse than Random Walk and methods in G1.

4.1.2 Real-World Networks: The previous experiments demon-
strate that a major factor in the performance of each method is the
ability to transition between different regions of the graph. Here,
we test to see whether this conclusion holds on real graphs.

We perform three sets of controlled experiments. In each set,
we locate two pairs of networks (Pair ‘A’ and ‘B’), each containing
networks that are similar with respect to two of the three structural
features, but are very different with respect to the third. For example,
Wiki-Vote and Twitter networks have average degree around 30 and
average community size around 1100, but differ in modularity (0.42
vs. 0.81). Statistics for the selected network pairs are listed in Table 3
(with the feature being varied shown in bold).2 In order to find

2Network datasets from http://networkrepository.com.

Table 3: Network statistics of realworld networks used in the
controlled experiments.

Test
Prop. Pair Network davд CSsvд Q

Q
A

Wiki-Vote 28.51 1,177.67 0.42
Twitter 33.01 1,129.25 0.81

B
Brightkite 7.51 274.10 0.68
MathSciNet 4.93 594.09 0.80

CSavд

A
Shipsec1 24.36 4,117.50 0.89
Shipsec5 24.61 5,252.15 0.90

B
Github 7.25 83.68 0.43

P2P-gnutella 4.73 1,276.76 0.50

davд

A
P2P-gnutella 4.73 1,276.76 0.50
Bingham 72.57 1,250.13 0.45

B
Amazon 2.74 272.44 0.99
UK-2005 181.19 157.13 1.00

communities, we use the modularity Q of communities found by
the Louvain method [5] and use it as a proxy for community mixing.
As mentioned in the previous section, modularity and community
mixing are inversely related (⇑ Q ≈⇓ µ). Because networks are of
different sizes and structures, rather than setting a fixed number of
queries, we set the query budget to be 5% of the number of nodes.
We perform 10 trials for each network and sampling method.

For each pair of networks, we refer to one of the networks as the
‘High’-valued network (H) and another as the ‘Low’-valued network
(L). These designations are relative to the other network in the pair
(e.g., the network with higher test value is labeled ‘H’).

Because Random Walk is the most stable method (i.e., shows
consistent performance regardless of the structural properties we
consider), we use it as a reference point. We show the number
of nodes or edges discovered by each sampling method as a per-
centage improvement above (or below) the number of nodes and
edges discovered by Random Walk. Results are shown in Table 4.
Each cell contains

[x
y
]
, where x is the percentage improvement of

the algorithm performs on the ‘Low’-valued network and y is the
percentage improvement of the algorithm performs on the ‘High’-
valued network compare to Random Walk performance. An arrow
indicates how the performance changes when the value of test prop-
erties changes from Low to High value. A symbol ‘⇑’ represents
the performance improves when the test property increases and ‘⇓’
shows the performance degrades when test property increases.

First, we consider pairs with similar average degree and average
community size, but different values of modularity Q (0.42 vs. 0.81,
and 0.68 vs. 0.8). As expected, G1 methods perform extremely well
when modularity is low in pair A (⇓ indicates the G1 performance
drops when modularity increases) for both node coverage and edge
coverage tasks. On the other hand, G1 methods perform very well
on both networks in pair B, because both networks have extremely
low average degree (davд < 10). The performance of G3 methods
are worse than Random walk, as we expected.



WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan

Table 4: Experimental results of the controlled experiments.
An arrow indicates how the performance changes when test
property changes from Low to High (⇑: improve, ⇓: degrade).
In

[x
y
]
, x and y indicate the percentage improvement of Low-

and High- valued networks, respectively (‘+’: outperform
RW, ‘-’: underperform RW).

Test
Prop.

Pair
Node Coverage Edge Coverage

% Imprv.
G1 vs. RW

% Imprv.
G3 vs. RW

% Imprv.
G1 vs. RW

% Imprv.
G3 vs. RW

Q
A ⇓

[ 7.62%
−5.24%

]
⇑
[
−22.44%
−13.97%

]
⇓
[21.12%
−2.90%

]
⇑
[
−58.13%
−49.33%

]
B ⇑

[12.47%
19.81%

]
⇑
[
−28.27%
−17.64%

]
⇑
[31.85%
53.49%

]
⇑
[
−47.22%
−23.10%

]

CSavд

A ⇑
[
−71.52%
−70.32%

]
⇓
[
−20.53%
−27.68%

]
⇑
[
−19.65%
−10.48%

]
⇓
[
−5.34%
−6.38%

]
B ⇑

[10.14%
15.67%

]
⇑
[
−35.21%
−15.18%

]
⇑
[20.01%
34.68%

]
⇑
[
−58.44%
−19.39%

]
davд

A ⇓
[ 10.14%
−14.38%

]
⇑
[
−15.18%
−0.87%

]
⇓
[34.68%
−3.19%

]
⇓
[
−19.39%
−27.72%

]
B ⇑

[
−0.40%
6.25%

]
⇑
[ 2.09%
334.34%

]
⇓
[
−0.48%
−1.42%

]
⇑
[ 1.53%
82.61%

]

Next, we consider networks with similar modularity and aver-
age degree, but different average community sizes (4118 vs. 5252
and 84 vs. 1277). Our earlier experiment predicted that G1 meth-
ods will perform better on networks with larger community sizes.
As expected, G1 performance improves for networks with larger
communities for both pairs.

Finally, we consider networks with similar modularity and av-
erage community size, but different average degrees (5 vs. 73 and
3 vs. 181). As predicted, G3 methods perform better on networks
with higher average degree in both pairs. However, we see less
consistent results for edge coverage. Overall, the experiments on
real networks bear out our results on synthetic networks.

4.2 Network Types
In a real application, the network properties are not known until the
sample is generated: so how can one select an appropriate crawling
method? Here, we analyze how well the algorithms perform by
network type (web, collaboration, technology, scientific, Facebook,
recommendation and other OSNs)3. The statistics of all networks
are listed in Table 5. Again, we set the maximum query budget to
be 5 percent of total nodes and perform 10 trials for each method.
We depict the mean and standard deviation of the percentage of
nodes and edges found in Table 6.

We make the following observations:
(1) G1 or G2 methods are almost always the best, regardless of

network type or coverage task.
(2) On collaboration, technological, recommendation, web and

online social networks, G1 methods perform the best, while

3Network datasets from http://networkrepository.com.

Table 5: Categories of the realworld networks and their
structural characteristics.

Type Network davд CSavд Q Properties

Collab.

Citeseer 7.16 988.35 0.90
Low degree, medium-

sized and clear
communities

Dblp-2010 6.33 739.91 0.86
Dblp-2012 6.62 1248.35 0.82
MathSciNet 4.93 594.09 0.80

Recmnd.
Amazon 2.74 272.44 0.99 Low degree, small

and clear communitiesGithub 7.25 83.68 0.43

FB
OR 25.77 1074.44 0.63

High degree, large
and clear communitiesPenn94 65.59 2186.11 0.49

Wosn-friends 25.77 856.65 0.63

Tech.
P2P-gnutella 4.73 1276.76 0.50 Low degree, large

and clear communitiesRL-caida 6.37 856.12 0.86

Web.

Arabic-2005 21.36 115.86 1.00
High degree, medium

-sized and fuzzy
communities

Italycnr-2000 17.36 1134.34 0.91
Sk-2005 5.51 338.22 0.99
Uk-2005 181.19 157.13 1.00

OSNs.
Slashdot 10.24 173.87 0.36 High degree, small-to-

medium-sized and
fuzzy communities

Themarker 29.87 458.90 0.31
BlogCatalog 47.15 1455.48 0.32

Scientific

PKUSTK13 68.73 3,514.56 0.88
High degree, large

and clear communities
PWTK 51.89 4,635.81 0.93
Shipsec1 24.36 4,117.50 0.89
Shipsec5 24.61 5,252.15 0.90

on Facebook and scientific networks, the G2 method is the
best.

(3) Methods in G3 seem not to be a good choice when consider-
ing these two goals on all types of network.

As suggested by Newman in [17], a modularityQ ≥ 0.3 indicates
a good community structure. As we can see, OSNs have the lowest
modularity as compared to others. This indicates that the commu-
nities are fuzzy and overlapping. Since these are social networks,
people can be part of several groups in real life (group of friends,
family, co-workers, etc.). So, consistent with our earlier results, G1
methods performs the best on networks in this category.

Other networks typically have higher values of modularity Q
(ranging between 0.4 and 0.9), and the determining factor of which
method is best thus depends on average community size and av-
erage degree. The ratio between average degree and average com-
munity size of collaboration, technology is around 200, while this
ratio on recommendation and web networks is about 35. This ratio
indicates how large the community is compared to average degree.
The average degrees of these four types of networks are quite low,
between 2 and 15. As we expected from the previous experiment,
G1 methods perform very well in this case. In contrast, on average,
Facebook and scientific computing networks have communities
only 12 and 80 times larger than their average degrees, which range
from 15 to 70. Method in G2 performs the best.

In view of our earlier experiments, we see that in the networks
with communities that are small relative to average degree, G1
methods quickly see all of a community, and then have trouble
escaping (because of the strong community structure). However,
when communities are large relative to average degree, both G1
and G2 methods tend to stay in the same community for much
longer, and G1 methods perform the best.



Guidelines for Online Network Crawling WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands

Table 6: Summary of the network characteristics and performance of algorithms. Algorithms tend to perform similarly on
networks in the same category.

Type Network
Node coverage Edge coverage

G1 G2 G3 G1 G2 G3

Collaboration: Low davд ,
Medium CSavд ,

High Q

Citeseer 25.66±2.94 25.15±0.55 21.01±0.23 20.48±1.68 19.49±0.42 15.1±0.52
Dblp-2010 32.59±0.12 26.53±0.37 18.22±0.16 29.16±0.08 19.53±0.39 12.72±0.29
Dblp-2012 38.33±0.04 31.74±0.28 26.21±0.11 33.47±0.03 22.39±0.36 17.09±0.07
MathSciNet 36.14±0.09 30.17±0.26 24.85±0.13 36.27±0.06 23.63±0.3 18.17±0.09

Recommendation: Low davд ,
Low CSavд , High Q

Amazon 5.71±0.16 5.73±0.06 5.85±0.18 5.60±0.06 5.61±0.08 5.50±0.17
Github 53.59±0.02 46.33±0.24 30.02±0.08 72.57±0.02 60.47±0.29 25.13±0.18

Facebook: High davд ,
High CSavд , High Q

OR 38.99±2.50 55.94±0.68 51.00±0.22 31.05±3.69 27.37±0.57 16.2±0.17
Penn94 75.30±1.05 82.52±0.34 80.07±0.24 24.04±1.74 19.47±0.41 12.39±0.13

Wosn-friends 38.20±3.05 55.80±0.49 50.93±0.19 30.92±3.12 27.85±0.7 16.46±0.17
Technology: Low davд ,
High CSavд , High Q

P2P-gnutella 36.02±0.11 32.71±0.17 27.74±0.22 26.96±0.08 20.02±0.1 16.13±0.17
RL-caida 28.86±0.12 27.71±0.47 26.62±0.10 39.57±0.18 30.21±0.85 20.26±0.11

Web: High davд ,
Medium CSavд , Low Q

Arabic-2005 9.47±2.49 6.47±0.72 9.54±1.48 6.97±0.94 5.40±1.28 6.75±0.95
Italycnr-2000 8.52±2.25 15.66±6.37 13.65±2.84 14.9±3.83 24.59±12.51 11.93±2.89

Sk-2005 10.33±0.87 6.41±1.04 8.21±0.65 9.69±0.51 6.21±0.96 8.03±1.02

OSNs: High davд ,
Low-to-medium CSavд ,

Low Q

Slashdot 70.68±0.01 61.23±0.25 36.81±0.75 75.85±0.01 57.74±0.24 21.84±0.56
BlogCatalog 90.38±0.02 90.38±0.37 90.38±0.49 90.51±0.01 82.28±0.32 18.81±0.26
Themarker 89.48±0.01 86.04±0.2 47.40±0.12 82.28±0.01 67.4±0.25 19.72±0.12

Scientific: High davд ,
High CSavд , High Q

PKUSTK13 7.40±0.51 43.94±9.74 33.78±1.51 5.68±0.17 10.58±0.61 9.41±0.22
PWTK 5.61±0.12 20.08±2.68 15.45±0.74 5.27±0.05 8.13±0.21 7.99±0.10
Shipsec1 7.81±0.44 27.47±1.43 21.77±0.52 7.80±0.89 9.71±0.54 9.17±0.35
Shipsec5 8.17±0.81 27.85±2.46 20.02±0.91 8.75±0.50 9.79±0.52 9.15±0.44

All in all, the G1 and G2 methods are the best, depending on
structural properties. G1 methods expand the sampled network by
quickly filling out the unobserved nodes (or edges) in a particular
region before moving out of the region. However, these methods
are obstructed by sharp community borders. In contrast, the G2
method Random Walk has the freedom to move around, and so
the crawler observes parts of many communities before it fills out
individual regions. Because of this, a Random Walk takes longer to
fully explore regions, but reaches more of the network.

5 CONCLUSION
Data collection is the first process of any network analysis task.
However, the literature contains a vast selection of network sam-
pling algorithms, and so it is often difficult for users to select a
single method that works well for their data, as sampling methods
that work well on one network may not work well on a different
network. In this paper, we performed a large-scale, comprehensive
study to understand how the structural features of networks affect
the performance of sampling methods. We identified three network
properties of interest: community separation, community size, and
average degree. We performed a large set of controlled experi-
ments on synthetic and real graphs, and considered two sampling
goals: node and edge coverage. We considered nine important sam-
pling methods, ranging from well-understood, classical methods

like Random Walk and BFS to modern, cutting-edge algorithms. We
performed experiments on real and synthetic networks, and demon-
strated that the performance of the sampling methods is highly
dependent on the network structure, and in particular, whether the
sampling method is able to transition between different regions of
the graph. As a result of our experiments, we categorized the nine
crawling methods into three groups: Node Importance-based,
Random Walk-based and Graph Traversal-based approaches.

We observed that Random Walk and Node Importance-based
algorithms performed well, depending on the network structure.
In particular, on networks with clear and sharp community struc-
ture, the Node Importance-based algorithms tend to get ‘stuck’
in a region of a graph, while the Random Walk method is able to
transition between regions. However, when boundaries between
communities are fuzzier, or the communities overlap, the Node
Importance-based methods demonstrate excellent performance.

Finally, we showed how a user can select an appropriate crawling
method based on the network type: in particular, the Random Walk
method is suitable for crawling Facebook and scientific computing
networks, but for collaboration, recommendation, technological,
web and other online social networks, Node Importance-based
methods are best.



WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands Katchaguy Areekijseree, Ricky Laishram and Sucheta Soundarajan

6 FUTUREWORK
As part of our future research, we plan to investigate different types
of query responses. In this work, we assumed that all neighbors are
returns for each query. However, in certain settings, this assumption
may not hold, and the crawler may need multiple queries to obtain
all of a node’s neighbors. For example, an online social network
API may divide a node’s neighbors into paдes , where each page
contains k records and only one page is returned at a time. Also,
we want to expand our findings and give the insight on directed
networks. It is not clear that our results will generalize to such a
setting, and we plan to investigate it further.

7 ACKNOWLEDGEMENTS
The authors would like to thank Jeremy Wendt of Sandia National
Laboratories for thoughtful comments and conversations.

REFERENCES
[1] Serge Abiteboul, Mihai Preda, and Gregory Cobena. 2003. Adaptive on-line page

importance computation. In Proceedings of the 12th international conference on
World Wide Web.

[2] Nesreen K. Ahmed, Jennifer Neville, and Ramana Kompella. 2014. Network
Sampling: From Static to Streaming Graphs. ACM Transactions on Knowledge
Discovery from Data (TKDD) 8, 2 (2014).

[3] Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong.
2007. Analysis of topological characteristics of huge online social networking
services. In International conference on WWW.

[4] Konstantin Avrachenkov, Prithwish Basu, Giovanni Neglia, Bruno Ribeiro, and
Don Towsley. 2014. Pay few, influence most: Online myopic network covering.
In Computer Communications Workshops.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical

mechanics: theory and experiment (2008).
[6] Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. 2013. Bandit algorithms

for social network queries. In 2013 International Conference on Social Computing.
IEEE, 148–153.

[7] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. 2009.
Unbiased sampling of facebook. preprint arXiv 906 (2009).

[8] Maciej Kurant, Athina Markopoulou, and Patrick Thiran. 2010. On the bias of
BFS (breadth first search). In Teletraffic Congress (ITC), 2010 22nd International.
IEEE, 1–8.

[9] Maciej Kurant, Athina Markopoulou, and Patrick Thiran. 2011. Towards unbiased
BFS sampling. IEEE Journal on Selected Areas in Communications 29, 9 (2011),
1799–1809.

[10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In 19th international conference on
World wide web.

[11] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical review E 78, 4 (2008),
046110.

[12] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 631–636.

[13] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1 (2009), 29–123.

[14] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Online sampling of high centrality
individuals in social networks. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, 91–98.

[15] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure. In
Proceedings of the 19th international conference onWorld wide web. ACM, 701–710.

[16] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. 2007. Measurement and analysis of online social networks.
In 7th ACM SIGCOMM conference on Internet measurement. ACM, 29–42.

[17] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in
networks. Physical review E 69, 6 (2004), 066133.

[18] Mostafa Salehi, Hamid R Rabiee, and Arezo Rajabi. 2012. Sampling from complex
networks with high community structures. Chaos 22, 2 (2012).

[19] Shaozhi Ye, Juan Lang, and Felix Wu. 2010. Crawling online social graphs. In
12th International Asia-Pacific Web Conference.


	Abstract
	1 Introduction
	2 Related Work
	3 Network Sampling through Data Crawling
	3.1 Problem Definition
	3.2 Online Crawling Methods
	3.3 The Effects of Network Structure on Algorithm Performance

	4 Experimental Studies
	4.1 Effects of Network Properties
	4.2 Network Types

	5 Conclusion
	6 Future Work
	7 Acknowledgements
	References

