
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 3944

Max-Node Sampling: an Expansion-Densification Algorithm for Data Collection

Katchaguy Areekijseree
Department of EECS
Syracuse University
Syracuse, NY U.S.A.

kareekij@syr.edu

Ricky Laishram
Department of EECS
Syracuse University
Syracuse, NY U.S.A.

rlaishra@syr.edu

Sucheta Soundarajan
Department of EECS
Syracuse University
Syracuse, NY U.S.A.
susounda@syr.edu

Abstract—In this work, we propose Max-Node sampling, a
novel sampling algorithm for data collection. The goal of
Max-Node is to maximize the number of nodes observed in
the sample, given a budget constraint. Max-Node is based on
the intuition that networks contain many densely connected
regions (i.e., communities), that may be only weakly connected
to another, and to maximize the number of nodes observed,
it is critical to transition between communities. The two key
phases of our algorithm are Expansion and Densification. The
goal of the Expansion phase is to transition to unobserved
regions, while the Densification phase aims to collect as many
nodes in the current community. We conduct experiments on
several real networks, and show an improvement of up to 40%
vs. the baselines.

Index Terms—Network Sampling; Data Collection; Data
Crawling, Large Graph, Complex Network, Algorithms;

1. Introduction

The rise of online social networking sites in recent
years has produced a gold mine of data. By analyzing
these networks, researchers can understand the interesting
behaviors and phenomena which happen in real world sys-
tems. However, before data can be analyzed, it must first be
collected.

These social networking platforms provide a channel
for collecting the data through their APIs. Unfortunately,
the APIs come with a limitation. For example, Twitter
allows only 15 requests per 15 minutes for crawling fol-
lowing/follower relationships, while Linkedln allows around
1,000 requests for the same interval. As described in [1], it
took almost six days to collect all the friends and followers
of 8,000 unique users on Twitter. Data collection is a time
consuming task and poses a challenge. Given that collecting
data is a time-consuming process, how should one determine
which nodes to query so that the resulting sample is optimal
with respect to a desired goal?

In this paper, we introduced Max-Node sampling, a novel
sampling algorithm for the task of collecting data with the
goal of maximizing the total number of nodes observed
given a limited query budget. The intuition behind Max-
Node comes from the observation that networks consist of

many communities, which are internally tightly connected.
When sampling, it is necessary to transition between these
communities in order to observe as many nodes as possible.
Our experiments on real networks demonstrate that Max-
Node performs up to 40% better than comparison strategies.

2. Related Works

Because network data is growing rapidly, there is a large
literature on network sampling. Sampling is necessary for
two reasons: (1) Current computing power cannot always
handle the sizes of available data, and (2) Collecting data
is time-consuming. For example, it is impossible to collect
the whole Facebook network within a reasonable amount of
time.

Accordingly, network sampling can be separated into
two main scenarios. The first scenario is referred to as
“scaling-down” or “down-sampling”. In this scenario, the
entire network data is available, and the goal is to scale down
the network to some desired size, and the sample graph
should preserve the network properties as a representative
of the original network. The second scenario, and the focus
of this paper, is a data collection scenario where we have a
limited view of the network. Here, decisions about how to
grow the sample are based only on the data that has been
observed so far.

In [2], the authors study the characteristics of different
sampling algorithms. They evaluate how well the output
graphs from different algorithms capture network properties.
Similarly, Maiya and Berger-Wolf present an algorithm that
aims to preseve the community structure of the original
network [3]. This algorithm is built on the concept of
expander graphs. The results shows that sample is capable
of capturing the community structure.

The most relevant work to this paper is presented in [4].
This work introduces a greedy sampling approach called
Maximum Observed Degree (MOD). The goal of this algo-
rithm is to maximize the network coverage, which is as same
as our objective. In MOD, in each step the algorithm selects
the node with the largest observed degree in the sample.
Their experimental results show that MOD outperforms
other algorithms such as BFS, DFS and RW. To the best

3945

of our knowledge, MOD is currently the best algorithm in
this class.

3. Problem Definition

In this work, we focus on sampling under the network
crawling scenario. For example, suppose that we want to
obtain data from Twitter, and we have only 24 hours to
collect the data. The goal is to get as many users as possible.
The process starts by selecting one known user account.
Then, we send a request through the API asking for the
followers of this account. The server responses by returning
a list of users back. All the users are stored in the list, and
our next query must be selected from this list. At each step,
the node we query must be one observed from a previous
query. The output is a set of unique users in the list.

Definition: Suppose there is a true, underlying undi-
rected network G(V,E), where V is set of nodes (users),
E is a set of edges (activities). We assume that we have no
information about G. We are given a starting node(nstart)
and a number of API requests (budget). We are allowed
to send a request to an API asking for neighbors of the
specified node. The API returns all neighbors of the queried
node. Our goal is to collect a sample graph S(V ′, E′),
V ′ ⊆ V and E′ ⊆ E, where the number of nodes in |V ′| is
maximized.

4. Proposed Method

In this section, we introduce the novel sampling al-
gorithm Max-Node. The current state-of-the-art algorithm,
Maximum Observed Degree, in each step queries the node
with the highest observed degree, with the assumption that
this node has high unobserved degree as well. Max-Node is
based on the intuition that real networks exhibit community
structure, and so if one queries the node with the highest
observed degree, one may get ‘stuck’ in a community. Max-
Node thus consists of two phases: Densification, which
queries nodes in the observed region to fill out that region,
and Expansion, which transitions the sampling algorithm to
a new region of the graph.

For example, suppose the data collection process starts
at a node in the bottom-left cluster in Figure 1. As we can
see, this network has several communities. The green area
is already explored, and the sample obtained so far is from
this region. The rest are the nodes have not been seen yet.
The Densification phase aims to collect as many nodes that
are densely connected. When the algorithm collects most
of the nodes in that region, the algorithm switches from
Densification to Expansion. The Expansion phase aims to
escape from the current region. It picks an appropiate node
that will lead to a new region. The algorithm switches
between these two phases until it runs out of the budget.
Pseudocode is shown in Algorithm 1 and a list of variables
in Table 1.

Algorithm 1 starts by collecting a small sample. The
initial sample can be collected by any crawling technique.

Figure 1: Concept of Expansion-Densification Algorithm

In our case, we adopt BFS crawling as shown in line 2.
BFS begins from any node nstart, queries the API for the
node’s neighbors, and adds all neighbors that have not been
queried to an unqueried queue. The first node in the queue
will be a next selected node. BFS is repeated for budgetbfs
times. All the nodes and edges found are kept as the initial
sample. We define two types of nodes, closed and open node.
A closed node is a node that has already been queried. An
open node is a node that has been observed, but not queried.

The main loop (line 3-7) of the algorithm switches
between Expansion and Densification, and it runs until
it reaches a specified amount of budget. The input for
Expansion is the sample graph that obtained so far, and it
returns a single node (nexp), with the hope that nexp leads
to a new region. Densification acquires nexp as its input
and tries to explore this new area of the network. It returns
the sub-sample graph(Ss). Finally, Ss is merged with S.

Algorithm 1 Exp-Den (budget, budgetbfs, nstart)
1: cost← 0
2: S ← bfs(budgetbfs, nstart)
3: while cost ≤ budget do
4: nexp ← Expansion(S)
5: Ss ← Densification(nexp)
6: S ← Merge Ss with S
7: end while

TABLE 1: Description of each variable

Description
Nq a set of nodes returned from the API request
Eq a set of edges returned from the API request
S a sample graph S(V ′, E′)
So a set of open nodes n ∈ V ′

Sc a set of closed nodes n ∈ V ′

Ss a sub-sample graph Ss(Vs, Es)
So
s a set of open nodes n ∈ Vs

Sc
s a set of closed nodes n ∈ Vs

e
′

ij eij ∈ Es, (i ∈ Sc
s ∧ j ∈ So

s) ∨ (i ∈ So
s ∧ j ∈ Sc

s)
sctexp an expansion score at tth iteration
sctden a densification score at tth iteration
nexp a selected node from Expansion phase
w1, w2 weight
| · | a cardinality of a set

3946

Algorithm 2 Densification (ncur)

1: Ss ← empty, sc0den ← 1, sc0exp ← 0
2: while sctexp < sctden or cost < budget do
3: Nq, Eq ←Make a query on ncur

4: sctden ← w1 × |n∈Nq\(So∪So
s)|

|Sc
s |

+ w2 × sct−1den

5: sctexp ← w1 ×
|e

′
ij |
|So

s |
+ w2 × sct−1exp

6: Ss ← Add Nq, Eq to sub sample
7: ncur ←node with the highest degree in Ss

8: cost← cost+ 1
9: end while

return Ss

Densification: To expand a sample within a region,
we adopt Maximum Observed Degree (MOD) [4], as it
outperforms other algorithms in the same class. Pseudocode
is shown in Algorithm 2. In each iteration, the node with
maximum degree is selected from So

s and the algorithm
requests its neighbors through the API. Nodes (Nq) and
edges(Eq) are returned and added to sub-sample (Ss).

Expansion: In the Expansion step, the algorithm tries to
escape from the current region of the network. The algorithm
selects a node that will lead to another dense area. In the
spirit of explore-exploit algorithms, one naive appoarch is
to pick a node uniformly at random from So. We refer this
Expansion strategy as “random” (in our future work, we
examine other strategies for Expansion).

Switching Phases: Two scores are calculated in each
iteration of Densification. Intuitively, in each step, the num-
ber of closed nodes increases while a number of new nodes
added decreases over time (diminishing marginal returns).
The algorithm will find many nodes in the same community
at the beginning and this amount drastically drops when
most of them are found. sctden measures how many new
nodes are added to the sample after a request, divided by the
number of closed nodes. sctexp is the fraction of the number
of edges (e

′

ij) connecting a closed node to an open node,
divided by the number of open nodes in sub-sample. If the
number of edges (e′ij) increases, the number of open nodes
also increases. If not, it means the algorithm already found
most of the nodes. These scores give us an approximation
of number of nodes left unexplored. Densification switches
to Expansion when sctexp is higher than sctden. Thus, the
algorithm can appropiately switch between phases.

5. Experiments and Discussion

To mimic the process of querying an API, we simulate
sampling from an existing network dataset. We compare our
algorithm with the MOD algorithm [4]. For simplicity, we
assume all networks are undirected. We use four different
datasets, described in Table 2. Grad and Undergrad are the
Facebook networks [5]. Enron-Email is an email communi-
cation network. Twitter is a friend-follower network that
we collected via Twitter API.

TABLE 2: Names and statistics of datasets used in our work.

Network # Nodes # Edges Global CC. Mod.
Grad 503 3256 0.4792 0.6915
Undergrad 1220 43208 0.2980 0.3937
Twitter 12230 50884 0.1117 0.6371
Enron-Email 36692 183831 0.4970 0.5975

(a) Grad (b) Undergrad

(c) Twitter (d) Enron-Email

Figure 2: Experimental results on each dataset

We ran 15 experiments on each dataset, and plotted
average values in Figure 2. These plots depict the between
amount of budget used versus the number of nodes obtained.
Our algorithm outperformed MOD in every case. This gives
us strong evidence that Max-Node algorithm is able to
collect more nodes than MOD at the same amount of budget.
Interestingly, on the Twitter dataset, we clearly see that
MOD becomes trapped in a region before being forced into
a new region (indicated by steps in the result curve). A large
budget is spent, but few nodes are added to the sample.

With a budget constraint, Max-Node performs well. Our
future work includes improving the Expansion strategy with
different switching criteria.

References

[1] J. D. Wendt, R. Wells, R. V. Field Jr, and S. Soundarajan, “On data
collection, graph construction, and sampling in twitter.”

[2] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2006, pp. 631–636.

[3] A. S. Maiya and T. Y. Berger-Wolf, “Sampling community structure,”
in Proceedings of the 19th international conference on World wide
web. ACM, 2010, pp. 701–710.

[4] K. Avrachenkov, P. Basu, G. Neglia, B. Ribeiro, and D. Towsley, “Pay
few, influence most: Online myopic network covering,” in Computer
Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Con-
ference on. IEEE, 2014, pp. 813–818.

[5] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are
who you know: inferring user profiles in online social networks,” in
Proceedings of the third ACM international conference on Web search
and data mining. ACM, 2010, pp. 251–260.

